Design and Construction of the New Frederick Douglass Memorial Bridge Washington, D.C.

Nathan M. Porter, P.E., AECOM, USA

South Capitol Street Corridor Phase I

- Key Elements
- Build new six-lane bridge
- Reconstruct Suitland Parkway \& I-295 Interchange
- Build two new traffic ovals
- Enhance bicycle and pedestrian mobility
- Contract Value $\$ 442 \mathrm{M}$
- Schedule
- Design:
- Bridge open to traffic:
- Project Completion:

August 2017 to November 2018 May 2021
December 2021

Project Design Appearance Goals

- Transform South Capitol Street
- Grand Urban Boulevard
- Gateway to the District's Monumental Core
- Create an elegant and iconic new bridge
- Reflects the classical sentiment of Washington's monumental bridges
- Harmonize the proposed scale and height with the long-term projected growth

Project Design Appearance Goals

- Pass/Fail 15 specific Project Design Appearance Goals (PDAGS)
- Visual Quality Concept Process
- Aesthetic Review Committee (ARC)
- DDOT
- FHWA
- CFA
- NCPC
- SHPO
- Technical Proposal - Visual Quality Plan (VQP)
- Design-Build Selection Scoring
- Total Score 1000 points
- Price Proposal 600 points
- Technical Proposal 400 points (160 points Visual Quality)
- Record of Recommendation (ROR)

Clearance Requirements

Controlling Design Parameters

- Corrosion Protection Plan
- Non-replaceable components: 100-year min. service life
- Replaceable components : 30 to 75-year min. service life
- River Scour
- Design scour: 200-year return period
- Check flood: 500-year return period
(22.2 feet at V-Piers)
(27.5 feet at V-Piers)
- Wind and Pedestrian Comfort Study \& Testing
- Structural design: 100-year return period
- Aeroelastic stability: 1000-year return period

General Plan and Elevation

Superstructure Typical Section

HALF TYPICAL SECTION
HALF SECTION AT HANGERS

V-Piers

Arch Ribs

V-PIER 1

Superstructure - Framing Plan

Superstructure - Floorbeams

Superstructure - Precast Deck Panels

Superstructure - Precast Deck Panels

PRECST DECK PANEL

Superstructure - Deck Closure Pour

Hangers - Stay Cables

- Hangers
- 14 hangers side arches; 16 hangers center arches; 88 total hangers
- Single stage stressing initial force/length; second stage stressing load/geometry control, as required

TYPICAL STAY CABLE HANGER

Hangers - Stay Cables

- Shortest hangers (approx. 31 feet long; 29 strand cable)
- Large lateral displacement / cable curvature
- High bending stresses at anchorages

Longitudinal Movement - Thermal Rise

Wind Tunnel Testing

- Site Specific Wind Study
- Arch Pressure Integration Study
- Vortex Shedding

- Static Force Coefficients
- Section Model Tests
- w/ Existing Bridge
- w/o Existing Bridge
- Cable Vibration Assessment
- Min. Req'd Damping 21 to 27\%
- Pedestrian Comfort Study

Wind Tunnel Testing

- Aeroelastic Model Testing
- Completed Arch
- Partial Arch (Construction Stages)
- Vortex-induced oscillations (VIO) observed during arch erection
- VIO mitigation measures will include wind restrictions during erection as well as deployment of in-line VDD as-required.

Wind Tunnel Testing

Pile Foundations

- 60" Dia. x 1" Steel Pipe Piles (Open End)
- ASTM 252, Grade 3 ($\mathrm{f}_{\mathrm{y}}=45 \mathrm{ksi}$)
- Spiral Welded
- Nominal Driving Resistance
- 1720 tons (Abutments)
- 2010 tons (V-Piers)
- Pile Lengths
- 85 feet (Abutments)
- 105 feet (V-Piers)
- Statnamic and PDA Load Testing ($\phi=0.75$)
- Reinforced Concrete Filled
 $60^{\prime \prime}$ PIPE PILE DETAIL - V-PIERS
- Corrosion Protection - Epoxy Coating

V-Pier Footing

V-Pier Footing

V-Pier Layout

V-Pier Layout

V-Pier Post-Tensioning

V-PIER ARCH BASE AND STRONGBACK
POST-TENSIONING LAYOUT

- Internal PT
- 27-0.6" dia. strand; grout filled
- Double end stressing
- External PT (Tie Tendons)
- 27-0.6" dia. strand
- Extruded HDPE sheathing
- HDPE duct; wax filled

V-Pier Post-Tensioning

Steel Arches - Geometry

Steel Arches - Field Sections

- 8 field sections side arch
$\&$ ARCH SPAN (SYMM.) \rightarrow
- 12 field sections center arch
- Lengths 28 to 65 feet
- Weights 20 to 75 tons

HANGER ANCHORAGE (TYP.)
(120)

ARCH PARABOLIC CURVE PARAMETERS					
$\begin{gathered} \text { REFERENCE } \\ \text { CURVE } \end{gathered}$	REFERENCE POINT			$\begin{aligned} & \hline \text { RISE } \\ & (\mathrm{FT}) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { SPAN } \\ & (F T) \end{aligned}$
	START	MIDDLE	END		
EXTRADOS	RC2A	RC3A	RC4A	61.6263	321.2518
WEB BREAK	RC2B	RC3B	RC4B	61.6263	297.3934
INTRADOS	RC2C	RC3C	RC4C	61.6263	300.8428

PARABOLIC CURVE EQUATIONS

EXTRADOS:	$Y=61.6263-0.00238855 x^{2}$
WEB BREAK:	$Y=59.6263-0.00278717 X^{2}$
INTRADOS:	$Y=54.6263-0.00272362 x^{2}$

Steel Arches - Field Sections

Steel Arches - Field Sections

Steel Arches - Butt Splice

- $11 / 2^{\prime \prime}$ dia. HS Bolts
- Machined surface MTB
- Bolt clamping / prying forces

SECTION AT SPLICE

TYPE 7
FIELD SPLICE FS-C3

Steel Arches - Butt Splice

Steel Arches - Base Connection

Steel Arches - Base Connection

Steel Arches - Base Connection

Erection Sequence - Arches

Erection Sequence - Deck

Erection Progress

Erection Progress

- District Department of Transportation (Owner)
- HNTB (PM/CM)
- South Capitol Bridgebuilders (JV: Archer Western Construction, LLC / Granite Construction Co.)
- AECOM (Lead Bridge Design)
- ECS (Geotechnical Engineering)
- RWDI (Wind)
- BeAM (Bridge Architect)
- RBLD (Aesthetic Lighting)
- Systra/IBT (Independent Design Check)
- McNary Bergeron (Erection Engineering)

GRAMTE

AECOM

- SDI (Cables Stays \& Post-tensioning)
- Veritas Steel (Structural Steel Fabrication)

Design and Construction of the New Frederick Douglass Memorial Bridge Washington, D.C.

Nathan M. Porter, P.E., AECOM, USA

