

Design and Construction of the New Frederick Douglass Memorial Bridge Washington, D.C.

Nathan M. Porter, P.E., AECOM, USA

South Capitol Street Corridor Phase I

- Key Elements
 - Build new six-lane bridge
 - Reconstruct Suitland Parkway & I-295 Interchange
 - Build two new traffic ovals
 - Enhance bicycle and pedestrian mobility
 - Contract Value \$442M
- Schedule
 - Design:
 - Bridge open to traffic:
 - Project Completion:

August 2017 to November 2018 May 2021 December 2021

- Transform South Capitol Street
 - Grand Urban Boulevard
 - Gateway to the District's Monumental Core
- Create an elegant and iconic new bridge
- Reflects the classical sentiment of Washington's monumental bridges
- Harmonize the proposed scale and height with the long-term projected growth

Project Design Appearance Goals

- Pass/Fail 15 specific Project Design Appearance Goals (PDAGS)
- Visual Quality Concept Process
- Aesthetic Review Committee (ARC)
 - DDOT
 - FHWA
 - CFA
 - NCPC
 - SHPO
- Technical Proposal Visual Quality Plan (VQP)
- Design-Build Selection Scoring
 - Total Score 1000 points
 - Price Proposal 600 points
 - Technical Proposal 400 points (160 points Visual Quality)
- Record of Recommendation (ROR)

Clearance Requirements

ELEVATION

Controlling Design Parameters

- Corrosion Protection Plan
 - Non-replaceable components: 100-year
 - Replaceable components :

100-year min. service life30 to 75-year min. service life

- River Scour
 - Design scour: 200-year return period
 - Check flood: 500-year return period
- (22.2 feet at V-Piers)(27.5 feet at V-Piers)
- Wind and Pedestrian Comfort Study & Testing
 - Structural design: 100-year return period
 - Aeroelastic stability: 1000-year return period

General Plan and Elevation

ELEVATION

Superstructure Typical Section

HALF TYPICAL SECTION

HALF SECTION AT HANGERS

V-Piers

Arch Ribs

Superstructure – Framing Plan

PARTIAL DECK PLAN - STRUCTURAL STEEL FRAMING

Superstructure – Floorbeams

Superstructure – Precast Deck Panels

PARTIAL DECK PLAN - PRECAST DECK PANELS

Superstructure – Precast Deck Panels

PRECST DECK PANEL

Superstructure – Deck Closure Pour

EDGE GIRDER CLOSURE POUR

LONGITUDINAL STRUT CLOSURE POUR

Hangers – Stay Cables

• Hangers

- 14 hangers side arches; 16 hangers center arches; 88 total hangers
- Single stage stressing initial force/length; second stage stressing load/geometry control, as required
- Strands
 - 0.62" diameter; coextruded HDPE sheathing; wax filled; non-bonded and parallel
 - 18 to 29 strands per hanger
- External HDPE Stay Pipe
 - Double helical rib
- Benefits
 - Fatigue resistance; corrosion protection; easy to replace

Longitudinal Movement – Thermal Rise

Wind Tunnel Testing

- Site Specific Wind Study
- Arch Pressure Integration
 Study
 - Vortex Shedding
 - Static Force Coefficients
- Section Model Tests
 - w/ Existing Bridge
 - w/o Existing Bridge
- Cable Vibration Assessment
 - Min. Req'd Damping 21 to 27%
- Pedestrian Comfort Study

Wind Tunnel Testing

- Aeroelastic Model Testing
 - Completed Arch
 - Partial Arch (Construction Stages)
 - Vortex-induced oscillations (VIO) observed during arch erection
 - VIO mitigation measures will include wind restrictions during erection as well as deployment of in-line VDD as-required.

Wind Tunnel Testing

Pile Foundations

- 60" Dia. x 1" Steel Pipe Piles (Open End)
- ASTM 252, Grade 3 ($f_v = 45$ ksi)
- Spiral Welded
- Nominal Driving Resistance
 - 1720 tons (Abutments)
 - 2010 tons (V-Piers)
- Pile Lengths
 - 85 feet (Abutments)
 - 105 feet (V-Piers)
- Statnamic and PDA Load Testing $(\phi = 0.75)$
- Reinforced Concrete Filled
- Corrosion Protection Epoxy Coating

V-Pier Footing

V-Pier Footing

V-Pier Layout

V-Pier Layout

V-Pier Post-Tensioning

- Internal PT
 - 27-0.6" dia. strand; grout filled
 - Double end stressing

- External PT (Tie Tendons)
 - 27-0.6" dia. strand
 - Extruded HDPE sheathing
 - HDPE duct; wax filled

V-Pier Post-Tensioning

Steel Arches - Geometry

SECTION AT BASE

SECTION AT 1/4 POINT

SECTION AT CROWN

Steel Arches – Field Sections

Steel Arches – Field Sections

Steel Arches – Field Sections

Steel Arches – Butt Splice

- $1\frac{1}{2}$ dia. HS Bolts
- Machined surface MTB
- Bolt clamping / prying forces

FIELD SPLICE FS-C3

Steel Arches – Butt Splice

Steel Arches - Base Connection

Steel Arches - Base Connection

Steel Arches - Base Connection

Erection Sequence - Arches

Erection Sequence - Deck

Erection Progress

Erection Progress

Credits

- District Department of Transportation (Owner)
- HNTB (PM/CM)
- South Capitol Bridgebuilders (JV: Archer Western Construction, LLC / Granite Construction Co.)
- AECOM (Lead Bridge Design)
- ECS (Geotechnical Engineering)
- **RWDI** (Wind)
- **BeAM** (Bridge Architect)
- **RBLD** (Aesthetic Lighting)
- **Systra/IBT** (Independent Design Check)
- McNary Bergeron (Erection Engineering)
- **SDI** (Cables Stays & Post-tensioning)
- Veritas Steel (Structural Steel Fabrication)

Design and Construction of the New Frederick Douglass Memorial Bridge Washington, D.C.

Nathan M. Porter, P.E., AECOM, USA