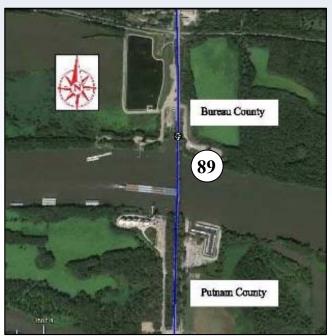
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Drilled Shaft Design in Weak Illinois Rocks

Timothy D. Stark, James H. Long, & Ahmed Baghdady University of Illinois at Urbana-Champaign & Abdolreza Osouli Southern Illinois at Edwardsville


> THE Conference 2018 Champaign, Illinois February 28, 2018

THE R. P. LEWIS CO., LANSING MICH.

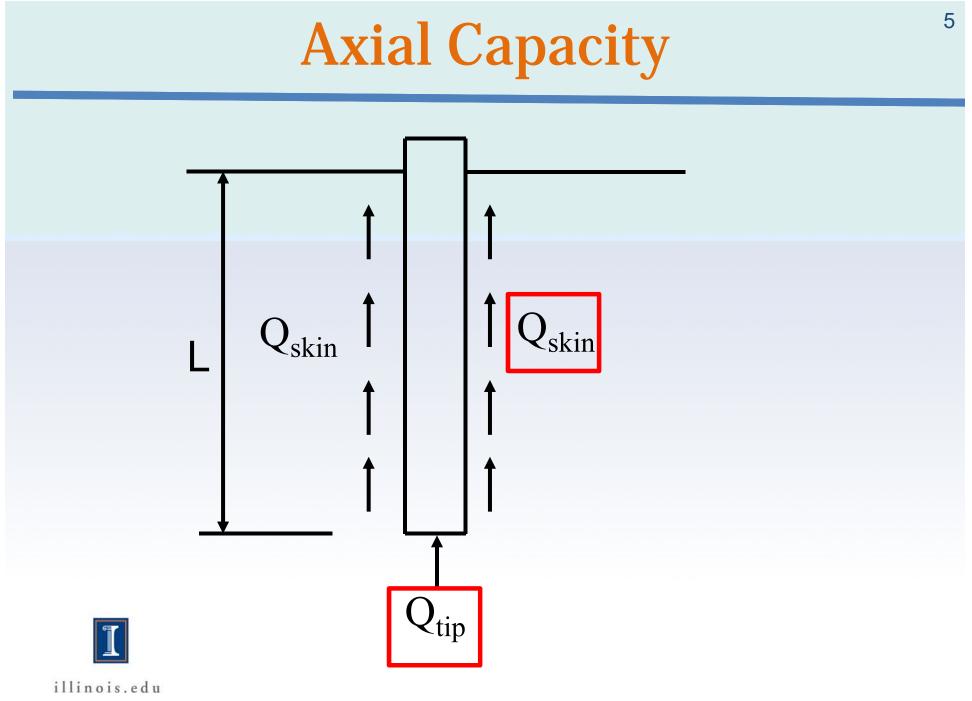
illinois.edu

IL 89 Bridge – Spring Valley, IL^{2/28}

Illinois Shales

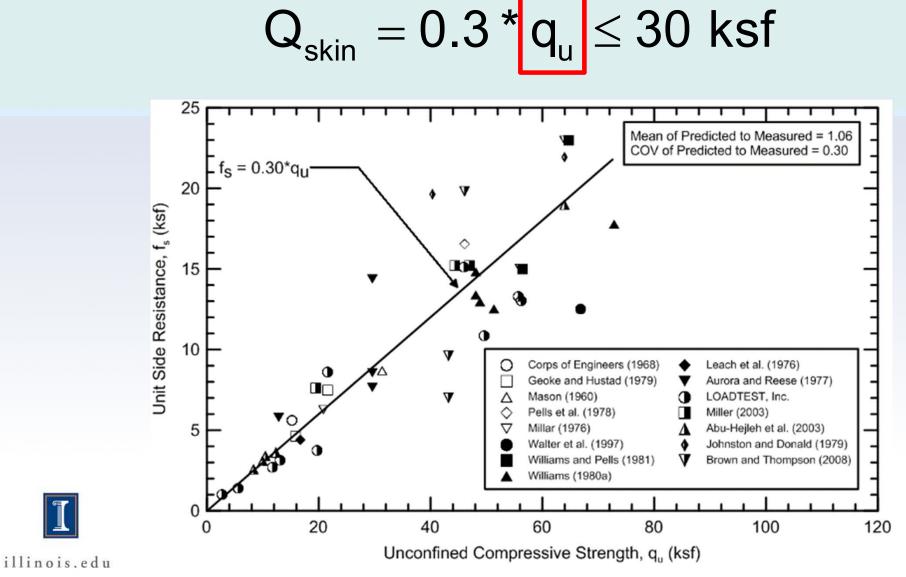
Weak Rock: $10 \le UCS \le 100$ ksf

illinois.edu T.D.Stark-Drilled Shaft in Weak Rocks ©



3/28

Outline


- Drilled Shaft Design in Weak Rock
- Laboratory q_u Measurement
- Field q_u Measurement
- q_u Correlation
- Summary

T.D.Stark-Drilled Shaft in Weak Rocks ©

Side Resistance

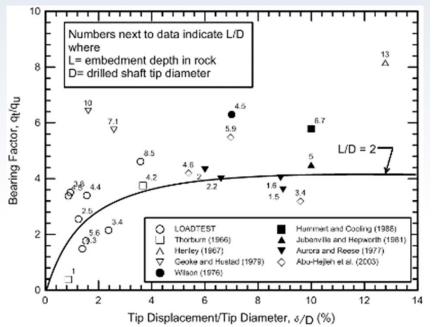
T.D.Stark-Drilled Shaft in Weak Rocks ©

Tip Resistance

 $_{\rm tip} = \frac{3.2 * \delta / D}{\delta / D + 1.3}$

where

 $q_t = tip resistance, ksf$


 q_{μ} = unconfined compressive strength, ksf

 $\frac{\delta}{D}$ = ratio of tip movement to tip diameter, in percent

$$d_c = Vesic's$$
 depth correction factor = 1.0 + 0.4 * k, dimesionless

 $k = \begin{cases} k = L/D & L/D \le 1 \\ k = \tan^{-1}(L/D) & L/D > 1 \end{cases}$

L = embedment depth in weak rock, in.

Outline

- Drilled Shaft Design in Weak Rock
- Laboratory q_u Measurement
- Field q_u Measurement
- q_u Correlation
- Summary

Shale Coring

illinois.edu T.D.Stark-Drilled Shaft in Weak Rocks © 9/28

Shale Core Recovery

10/28

illinois.edu

T.D.Stark-Drilled Shaft in Weak Rocks ©

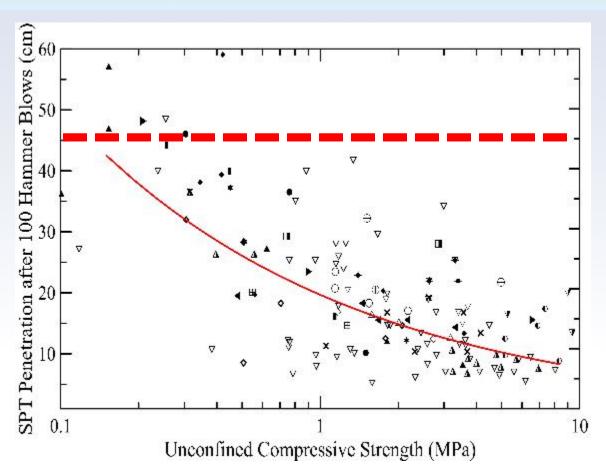
Shale Core Recovery

11/28

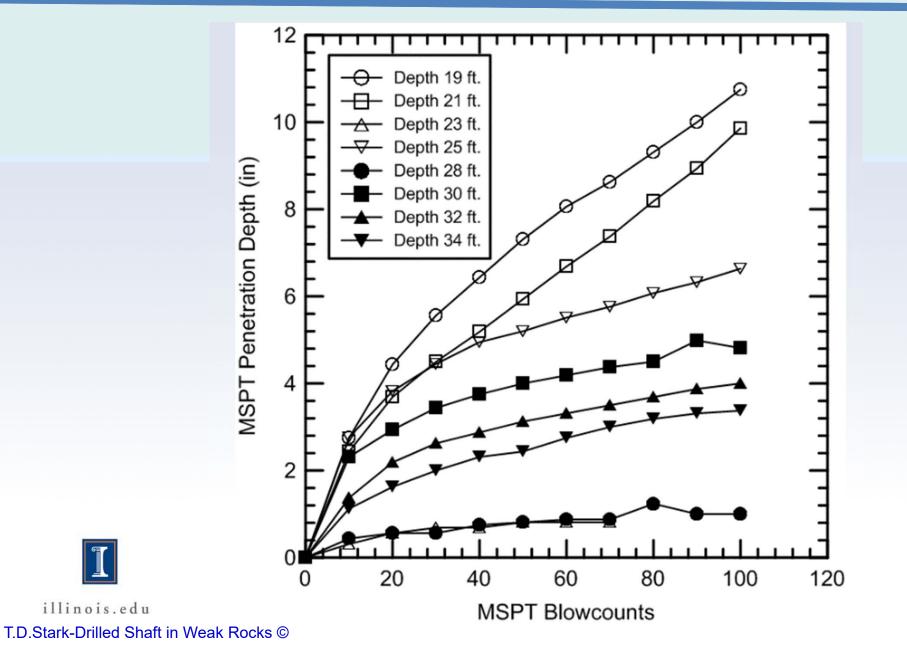
T.D.Stark-Drilled Shaft in Weak Rocks ©

Outline

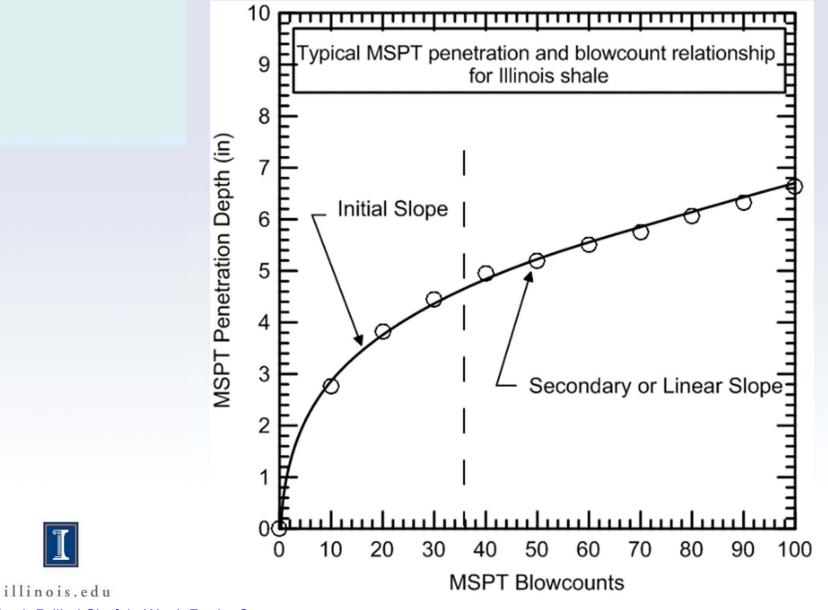
- Drilled Shaft Design in Weak Rock
- Laboratory q_u Measurement
- Field q_u Measurement
- q_u Correlation
- Summary



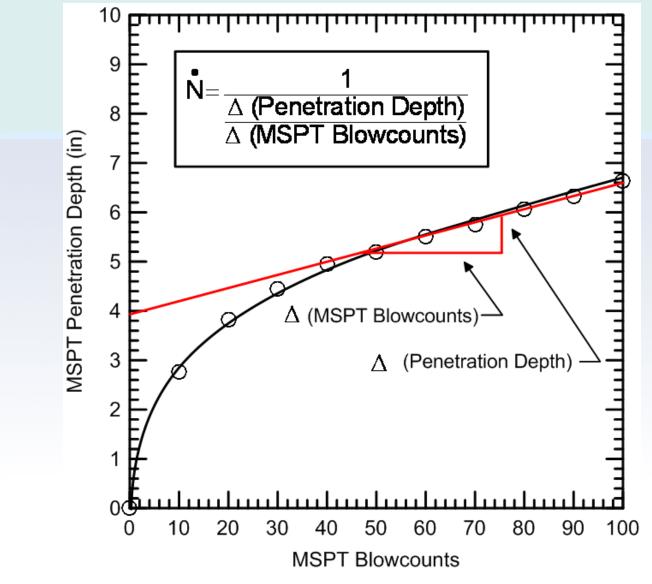
MODIFIED STANDARD PENETRATION TEST ^{13/28}


Standard Penetration Test (SPT)

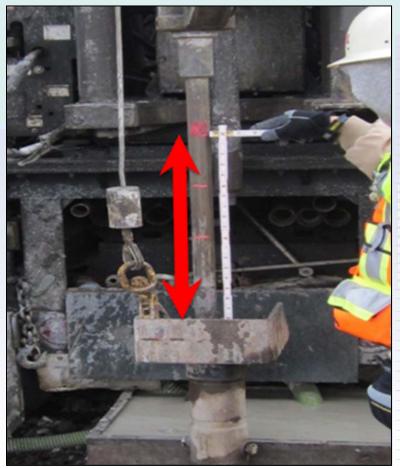
- 140 lbs
- Hammer drop = 30 inches
- <u>18 inches (45 cm)</u> of Penetration (Not Achieved in Soft

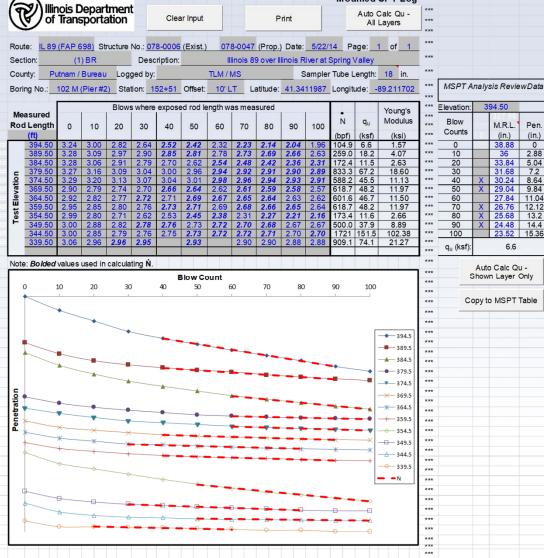


SPT Penetration v. Blowcounts


14/28

Initial and Secondary Slopes




T.D.Stark-Drilled Shaft in Weak Rocks ©

Penetration Rate

MSPT Datasheet

illinois.edu T.D.Stark-Drilled Shaft in Weak Rocks © Modified SPT Log ***

MSPT Datasheet

DRILLED SHAFT AXIAL CA	ΡΑСΙΤΥ	SHALE		
I.D.O.T. BBS FOUNDATIONS AND GEOTEC	CHNICAL UNIT		Mod	lified on 9/25/2014
		Drilled S	haft Dia.'s for	Design Table
STRUCTURE ====================================	Clear Input	Print Design Table	36	IN.
SUBSTRUCTURE & REFERENCE BORING ===: W. Abutment - Boring #2	olear input	Thin D coign Tuble	42	IN.
		Print Unit	48	IN.
ESTIMATED TOP OF SHALE ELEVATION ==== 600.50 FT	Print Input	Resistance Table	54	IN.
DRILLED SHAFT DIAMETER IN SHALE ====== 36 IN.				IN.
FACTORED AXIAL LOAD ====================================				IN.

SOCKET	TIP	LAYER	UNCONFINED COMPRESSIVE	AVG. q _u W/IN 2 -	NOMINAL SIDE	CUMULATIVE SIDE	and a consecutive service	H CORR. CTORS	NOMINAL TIP	NOMINAL SHAFT	FACTORED SHAFT	RANGE OF SERVICE LOADING CORRESPONDING SETTLEM			
DEPTH	ELEV.	тніск.	STRENGTH (q u)	SHAFT DIA.	RESIST.	RESIST.	k	dc	RESIST.	RESIST.	RESIST.	LOAD	SETTLEMENT	LOAD	SETTLEMENT
(FT)	(FT)	(FT)	(KSF)	(KSF)	(KIPS)	(KIPS)			(KIPS)	(KIPS)	(KIPS)	(KIPS)	(IN.)	(KIPS)	(IN.)
1.25	599.25	1.25	10.0	19.6	35	35	0.417	1.17	404	439	220	100	0.10	180	0.20
2.50	598.00	1.25	12.0	25.0	42	78	0.833	1.33	589	667	333	160	0.10	275	0.19
3.75	596.75	1.25	14.0	33.8	49	127	0.896	1.36	810	937	469	230	0.10	375	0.18
5.00	595.50	1.25	20.0	47.1	71	198	1.030	1.41	1175	1373	686	325	0.10	550	0.18
6.25	594.25	1.25	24.0	57.8	85	283	1.123	1.45	1481	1764	882	425	0.10	750	0.20
7.50	593.00	1.25	30.0	61.6	106	389	1.190	1.48	1606	1995	998	475	0.10	800	0.18
8.75	591.75	1.25	40.0	56.0	141	530	1.240	1.50	1481	2011	1005	500	0.10	850	0.18
10.00	590.50	1.25	60.0	47.1	212	742	1.279	1.51	1258	2000	1000	500	0.10	850	0.17
11.25	589.25	1.25	90.0	34.2	318	1060	1.310	1.52	920	1980	990	475	0.08	800	0.15
12.50	588.00	1.25	72.0	26.4	254	1315	1.335	1.53	716	2031	1015	500	0.08	850	0.14
13.75	586.75	1.25	42.0	25.8	148	1463	1.356	1.54	704	2167	1084	500	0.08	900	0.14
15.00	585.50	1.25	6.0	38.3	21	1484	1.373	1.55	1047	2532	1266	600	0.09	1100	0.16
16.25	584.25	1.25	20.0	48.4	71	1555	1.388	1.56	1331	2886	1443	700	0.10	1200	0.17
17.50	583.00	1.25	30.0		106	1661									
18.75	581.75	1.25	36.0		127	1788									
20.00	580.50	1.25	40.0		141	1930									
21.25	579.25	1.25	72.0		254	2184									
22.50	578.00	1.25	68.0		240	2425					12 - C				
1															

MSPT Procedure

MSPT Test Procedure

20/28

University of Illinois at Urbana-Champaign

Illinois Modified Standard Penetration Test Procedure

Prepared for Illinois Department of Transportation

By: Timothy D. Stark, James H. Long, Ahmed Baghdady, and Abdolreza Osouli Department of Civil Engineering University of Illinois at Urbana–Champaign 205 North Mathews Urbana, Illinois 61801

> Project Contacts: Timothy D. Stark at (217) 333-7394 tstark@illinois.edu

> > Jim Long at (217) 333-2543 jhlong@illinois.edu

Abdolreza Osouli at (618) 650-2555 aosouli@siue.edu

Ahmed Baghdady at (319) 512-0170 Baghdad2@illinois.edu

illinois.edu T.D.Stark-Drilled Shaft in Weak Rocks ©

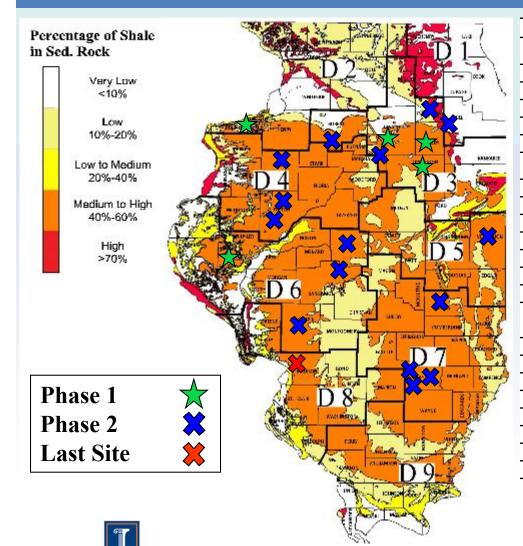
April 4, 2017

Outline

- Drilled Shaft Design in Weak Rock
- Laboratory q_u Measurement
- Field q_u Measurement
- q_u Correlation
- Summary

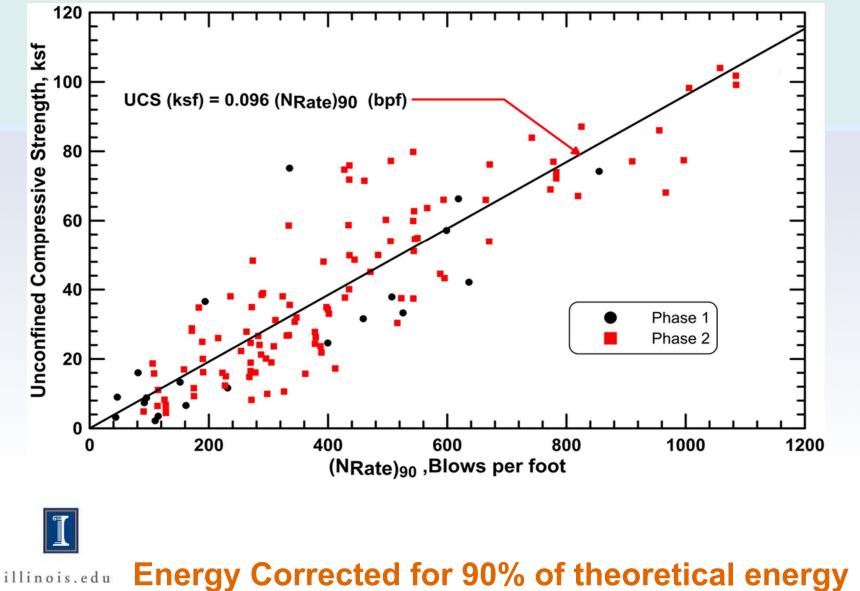
IDOT Bridge Sites

US 24 over Lamoine River, Brown County


IL 23 over Short Point Creek, Livingston County

T.D.Stark-Drilled Shaft in Weak Rocks ©

Shale Subsurface Investigation


Site	County	District						
PHASE 1								
John Deere Road (IL 5) over IL 84	Rock Island	2						
IL 23 over Short Point Creek	Livingston	3						
FAI 80 over Aux Sable Creek	Grundy	3						
FAU 6265	LaSalle	3						
US 24 over Lamoine River	Brown	6						
PHASE 2								
I-55 over Des Plaines River	Will	1						
IL 89 over the Illinois River	Bureau	3						
IL 23 over Otter Creek	LaSalle	3						
Eldamain Road over Fox River	Kendall	3						
CH-9 over I-74	Knox	4						
US 24 over Big Sister Creek	Fulton	4						
US 24 over Little sister Creek	Fulton	4						
US150/IL Rt.1 over Little Vermilion River	Vermilion	5						
IL108 over Macoupin Creek	Macoupin	6						
South of Pawnee Bridge	Sangamon	6						
BL55 over Salt Creek	Logan	6						
TR 325 over Elm Creek	Clay	7						
TR 355 over Seminary Creek	Clay	7						
IL 133 over Embarrass River	Coles	7						
CH-10 over Buck Creek	Clay	7						
IL 160 over Silver Creek site	Madison	8						

23/28

21 Shale Sites Drilled

Ref.: Willman, H.B., and others, (compilers), 1967, Geologic Map of Illinois: Illinois State Geological Survey, scale= 1:500,000, paper

UCS Correlation

T.D.Stark-Drilled Shaft in Weak Rocks ©

24/28

O-Cell Loadtest

illinois.edu T.D.Stark-Drilled Shaft in Weak Rocks © 25/28

Outline

- Drilled Shaft Design in Weak Rock
- Laboratory q_u Measurement
- Field q_u Measurement
- q_u Correlation
- Summary

Summary

- Improved Drilled Shaft Design in Weak Rocks
- Cost Savings
 - Less conservative q_u
 - Less conservative design
 - Less shale coring & laboratory testing
 Shorter design time

Implementation

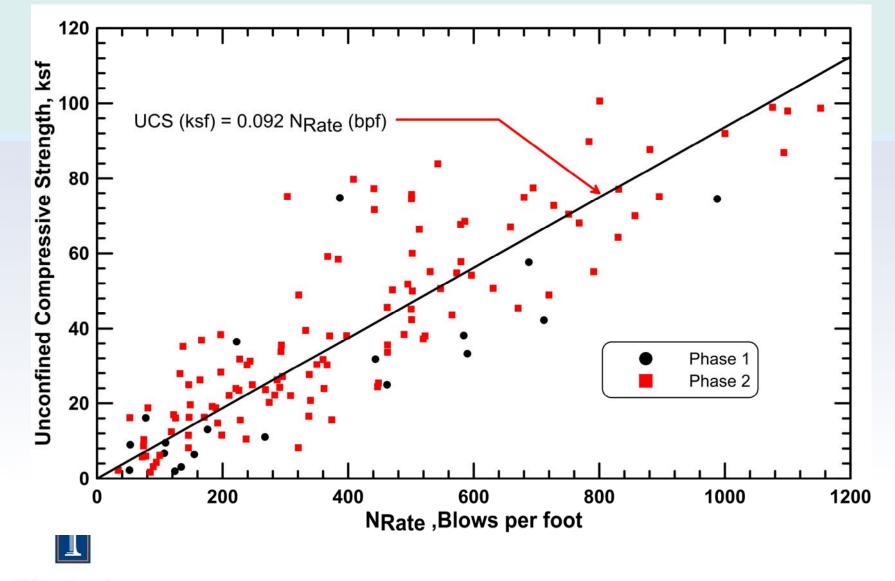
- IDOT MSPT Test Method & Spreadsheet

Acknowledgements

- William Kramer TRP Chair, Bridges
- Bradly Hessing Bridges
- Heather Shoup Materials
- Michael Short District 3
- Brian Laningham District 6
- Dan Tobias Materials
- Greg Heckel District 6
- Rob Graeff District 9
- Luke Murphy Bridges
- Megan Swanson Materials
- Naser Abu-Hejleh FHWA
- Michah Loesch FHWA
- Chad Hodel WHKS & Co.
- Terry McCleary McCleary Engineering
- Tom Casey SCI

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Drilled Shaft Design in Weak Illinois Rocks


Timothy D. Stark, James H. Long, & Ahmed Baghdady University of Illinois at Urbana-Champaign

Abdolreza Osouli Southern Illinois at Edwardsville

> THE Conference 2018 Champaign, Illinois February 28, 2018

illinois.edu

UPDATED MSPT VS. UCS CORRELATION

illinois.edu EB:Stark-Brilled Shaft in Weak Rocks © 30/28

When to Use MSPT

Case (A): Previously Investigated Sites (i.e., UCS and RQD Available)

Determine the Range of UCS for the shales from the Boring logs and Reported Testing,

- For UCS between 10 and 100 ksf, use MSPT for these materials and rock coring is not required,
- For UCS >100 ksf, rock coring is required,
- For UCS < 10 ksf, traditional SPTs and soil testing of the founding materials is needed to measure the UCS.

illinois.edu

When to Use MSPT

Case (B): New Sites

- Start with Traditional SPT at reasonable intervals (e.g. 2.5 ft):
 - UCS of split-spoon sample measured using field Rimac
 - Switch to MSPT if split-spoon sampler is unable to penetrate 18 inches and/or field $10 \le UCS \le 100$ ksf
- Switch to Rock Coring if field UCS > 100 ksf or penetration < 0.4 inch/last 40 blows</p>

