Field Monitoring and Numerical Simulation for Performance Assessment of Integral Abutment Bridges

James M. LaFave, PhD, PE

Professor and CEE Excellence Faculty Scholar Associate Head & Director of Undergraduate Studies Department of Civil & Environmental Engineering (CEE) University of Illinois at Urbana-Champaign (UIUC)

ILLINOIS

Engineering (T.H.E.) Conference February 27th, 2018

Outline

Introduction – Integral Abutment Bridges (IABs)

- IAB Parametric Study Numerical Simulations
 - Overview of modeling methodology
 - Summary of analytical modeling results
- IAB Field Monitoring of Two Highway Bridges
 - Implementation of field monitoring systems
 - Summary of field data
- □ Ongoing Work

Integral Abutment Bridges (IABs)

- IABs can provide benefits in terms of decreased construction and maintenance costs
- The superstructure & substructure acts as one continuous unit under thermal & other post-construction loading
- Most previous IAB research has focused on substructure behavior & demand

Typical Integral Abutment Detail (IDOT Bridge Manual, 2012)

IABs in Illinois

- IDOT IAB design & construction limits have been placed on highway bridge length & skew configurations
 - Mainly a function of pile type, based on substructure considerations
- Previous research in Illinois has investigated soil-pile interaction at IAB foundations

UIUC CEE IAB Research

Research Goals:

- Gain a better understanding of IAB behavior (particularly under thermal loads and for superstructures)
- Improve the design and construction provisions for IDOT IABs
- Two-Part Research Project:
 - Detailed parametric study employing finite element models of IABs
 - Instrumentation & field monitoring of two (2) IABs in northern Illinois

IAB Parametric Study – Numerical Simulations

Typical IAB SAP Analytical Model

IAB Modeling – Primary Parameters

- Primary Parameters Are Largely Based Around Bridge Geometry:
 - Number of spans (1 to 20)
 - Individual span lengths (50, 100, 150 & 200 ft) & end-span ratio
 - Overall length (up to 1200 ft)
 - Skew (0, 15, 30, 45 & 60 degrees)
 - Width (36, 60 & 96 ft)
 - $\square \text{ Piles (HP8} \rightarrow \text{HP18)}$

Global Movement vs. Effective Expansion Length

- 9
- □ Increasing EEL results in an increase in global longitudinal movement
- The resulting model displacements are typically more than 90% of those corresponding to free expansion / contraction

Global Movement with Skew

Increased bridge skew results in non-symmetric movement of the acute and obtuse corners

\square Bridges with skew between 0° and 30° exhibit more symmetric movement

■ For skews above 30°, movement is toward the acute corner

Thermally-Induced Girder Stresses

11

Girder Section: W36x194

- Girder bottom
 stress values control
 for composite
 sections
- Maximum stresses
 due only to thermal
 load are located at
 the abutments

Girder Bottom Stress with Skew

12

Pile Strains vs. Skew and EEL

13

Pile Number (obtuse -> acute pile)

EEL (ft)

General Effects of IAB Parameters

Increase in:	Effect:
EEL	Increase in pile & girder demands
Pile size	Decrease in pile demands, increase in girder demands
Bridge skew	Increase in pile demands, decrease in girder demands
Bridge width	Small increase in pile demands
End-span ratio	Decrease in pile & girder demands

IAB Modeling – Secondary Parameters

Soil Foundation Stiffness

- Default: medium clay
- Variations: stiff and soft clay, dense and loose sand
- Backfill Stiffness
 - Default: uncompacted sand
 - Variations: stiff backfill
- Pile Conditions
 - Default: H-piles, weak-axis orientation
 - Variations: pipe piles, H-pile w/ strong-axis orientation, double H-piles
- Pile-Top Relief

Secondary Parameters

- Pile strains increase with:
 - Dense Sand
 - Stiff Clay
- Pile strains decrease with:
 - Pipe Piles
 - Pile Relief
 - Loose Sand
 - Soft Clay
 - Stiff Backfill
 - Double Piles
 - Strong-Axis

Outcomes for Design

Pile strain and girder stress nonlinear regressions:

Proposed updated pile charts:

CIVIL ENGINEERING STUDIES Illinois Center for Transportation Series No. 16-015 UILU-ENG-2016-2015 ISSN: 0197-9191

INTEGRAL ABUTMENT BRIDGES UNDER THERMAL LOADING: NUMERICAL SIMULATIONS AND PARAMETRIC STUDY

Prepared By James M. LaFave Larry A. Fahnestock Beth A. Wright Joseph K. Riddle Matthew W. Jarrett Jeffrey S. Svatora Huayu An Gabriela Brambila University of Illinois at Urbana-Champaign

Research Report No. FHWA-ICT-16-014

A report of the findings of

ICT PROJECT R27-115 Analysis of Superstructures of Integral Abutment Bridges

Illinois Center for Transportation

June 2016

19

IAB Field Monitoring of Two Highway Bridges

IAB Instrumentation Goals

Bridge Instrumentation Schematics

Kishwaukee Bridge Instrumentation Details (similar scheme for UPRR)

Modeling of Site Bridges

- SAP2000 was also used to model each instrumented bridge
- Boring logs were utilized to determine backfill and foundation soil properties at each site
- Soil softening was included to represent pile-top relief:
 - Kishwaukee \rightarrow Bentonite slurry
 - $\square \text{ UPRR} \rightarrow \text{MSE wall effects}$

Displacements – Kishwaukee

Approach Slab Behavior

- Strains are not uniform throughout the approach slab
- Average strain indicates a clear trend with change in temperature

Abutment Cold Joint Rotations

Middle band = 74% of data

Girder Differential Rotations

Kishwaukee Field vs. Model Abutment Rotations

Pile Strains

29

- Pile top strains from the field data are closer to pure weak-axis flexure than combined flexure
- Strong-axis bending causes a separation in magnitude between strain gage pairs
- Axial force causes a shift in the magnitude of tensile vs. compressive strain

Kishwaukee – Obtuse Pile Top Strains

Axial contribution causes upward shift in magnitude; strong-axis bending causes a separation between gage pairs

Girder Demands

- 51
- Top-flange and web gages trend well over time and with temperature
- Bottom-flange measurements typically deviate from expected trends over time, after the first fall/winter/spring

CIVIL ENGINEERING STUDIES Illinois Center for Transportation Series No. 17-022 UILU-ENG-2017-2022 ISSN: 0197-9191

Integral Abutment Bridges under Thermal Loading: Field Monitoring and Analysis

Prepared By James M. LaFave Larry A. Fahnestock Gabriela Brambila Joseph K. Riddle Matthew W. Jarrett Jeffrey S. Svatora Beth A. Wright Huayu An University of Illinois at Urbana–Champaign

Research Report No. FHWA-ICT-17-017

A report of the findings of

ICT PROJECT R27-115 Analysis of Superstructures of Integral Abutment Bridges

Illinois Center for Transportation

August 2017

Overall Conclusions for IABs

- □ IAB Analysis (Parametric Study)
 - Bridge expansion & contraction are about 90% of the magnitude of free expansion & contraction
 - Thermally-induced stresses in the superstructure should be considered when proportioning girders (especially in end-spans)
 - An allowance for moderate inelastic deformation in pile foundations may broaden the range of acceptable bridge layouts

IAB Instrumentation (Field Monitoring)

- Field results were used to validate parametric study analytical models and to better understand IAB & approach slab performance
- Pile strains in the field closely follow predicted analytical trends
- Girder bottom flanges exhibit the highest thermal stress ranges

Ongoing Work – IAB Approach Slab Research

Research Goals:

- Identify the fundamental cause of cracking issues in IAB approach slabs
- Develop improved design criteria and procedures to mitigate cracking
- □ Three Main Components:
 - Investigation of existing IAB approach slabs
 - Numerical modeling parametric study
 - Field instrumentation & monitoring of two Illinois Tollway IAB approach slabs

Approach slab embedded strain gage instrumentation

IAB Seismic Research

Research Goals:

- Assess the behavior of IABs to a 1000-year return period seismic event
- Form recommendations to improve seismic design & construction of IABs, with a focus on southern Illinois
- □ Two Main Components:
 - Develop 1000-year return period hazard ground motions for southern Illinois
 - Model IABs in OpenSees and assess their seismic behavior

Total base shear in a three-span steel IAB during a ground motion

Schematic of the three-span IAB used for modeling in OpenSees

Acknowledgements

- Illinois Department of Transportation (IDOT)
- Illinois Tollway
- □ Illinois Center for Transportation (ICT)
- □ ICT R27-115 Technical Review Panel Chair: Mark Shaffer (IDOT)
- □ Co-PI & UIUC CEE Professor Larry Fahnestock
- Gabriela Brambila, Joseph Riddle, Matthew Jarrett, Jeffrey Svatora, Beth Wright & Huayu An (former UIUC CEE Graduate Student Researchers)