TRANSPORTATION ENEINEERS+PLANNERS

(Y) Illinois Department of Transportation

2016 THE Short Course

Flashing Yellow Arrows
Mike Dolde, PE, PTOE - CBB Randy Laninga - IDOT

SHORTCOURSE OBJ EC TIVES

- History
- Operation
- Planning
- Design
- Implementation
- Evaluation
- Lessons Leamed

HISTORY OF FYA

-Why?

- Improve Safety
- Improve Operations

HISTORY OF FYA

- When
- First Evaluated In 2003
- National Cooperative Highway Research Program (NCHRP Report 493-2003)
- Approved For Use By FHWA On Interim Basis in 2006
- Included As Optional Left Tum Type in 2009 MUTCD

ADVANTAGES PER NCHRP 493 \& 123

- Provides an exc lusive display for left tum control
- Reduces Left Tum Crashes
- Eliminates the left tum trap for lagging lefts.
- Better progression using lead - lag lefts.
- Increasescapacity
- Can be used fordifferent phasing schemes.
- Promotes nationwide consistency for protected/permissive display

HISTORY OF FYA

- Where
- District 4, Peoria Installed first locations in Illinois

Agency	Implementation Date	Number of Implementation Sites
M ontgomery County, MD	September 2000	3
City of Tusc on, AZ	May 2001	3
J ackson County, OR	May 2001	1
Oregon DOT	June 2001	2
City of Beaverton, OR	April 2002	3
Brow ard County, FL	June 2002	3

STARIING IN PEORIA

- Noticed Flashing Circular Red in Michigan
- Tumed down by Central Office
- City of Peoria tries two locations of FRA for national study.
- My request tumed by Central Office
- Depositions on two fatal crashes
- Safety project approved after 2009 MUTCD.

DISTRICTFOUR FYA PROJ ECT

- Two Major Safety Projects
- April 2010 Letting
- IL 40 (Knoxville Ave) \& US 150 (War Memorial Drive)
- \$400,000
- J une 2010 Letting
- Rest of the State routes in Peoria, East Peoria, Pekin, Bartonville, Creve Coeur, North Pekin and Morton
- \$500,000
- Multiple sma ll projects
- Galesburg, Aledo and Macomb
- Total of 150+ intersections

OUIREACH

- Support from the cities
- Presentations
- Brochures
- You Tube
- Attempted Press Conference
- Television News Stories
- News PaperArticles

TYPICALCOMMENIS

- "Waita minute, wait a minute, wait a minute. The federal and local govemments are spending nearly $\$ 1$ million total to let people know that tuming left can be dangerous? I have to say, if you tum left into traffic, you deserve to be slammed (obviously not fair to the people who have to hit you).
When I took the driver's test (mind you, that was a while ago), I was told to wait for oncoming traffic to pass before making the tum. Hasthischanged in the last several years?
People will still try to make left tums in front of oncoming traffic, regardless of the yellow light. Unless the light is solid red, all of this is a waste of money.
\{Workers will run new cables, replace the heads, rewire and reprogram the lights.'\} Let me guess...Unions? Seems to be the only reason you would create such a stupid project forsuch a stupid reason

NO SENSE

- "This is it people. Society has become so stupid that they cannot stop themselves from tuming into oncoming traffic. And so these fla shing yellow lights are supposed to save the day? Darwin must be spinning in his grave right about now...."

CELLPHONES ISTO BLAME

- "This is another waste of money brought on by cell phones.

The best way to reduce accidents is for ma nufac turers to make cell phones inoperable when the vehicle engine is running.
It doesn't matter what the law says, stupid people will insist on using their cell when they are going down the road. And those stupid people will continue to be a major cause of accidents.
Take the toys out of the hands of the stupid people, or continue to suffer the consequences."

RNALY SOME GOOD SENSE

- This isn't nearly as diffic ult as most commenters seem to think it is.

Here's the way it works:
-Green a rrow means you have the priority to tum left without any oncoming traffic.
-Yellow (steady) a rrow means that your left tum prionty is a bout to end.
-Red a rrow means that you are not allowed to tum left.
-Yellow (flashing) a now means that you can tum left after yielding to oncoming traffic, because they have a green.
This isn't rocket science, and it's becoming a national standard. Peoria just happens to be one of the earliest markets for these new signals.

RNALY SOME GOOD MATH

- "@c wilson60: If we used your logic for the past 100 years, we wouldn't hàve traffic signals at all. I'm sure some of our grandparents compla ined a bout paying tra xpayer dolla rs to replace traffic cops with those newfangled 'electric policemen', assignalswere originally called. And I'm sure some of our parents complained about adding a yellow light to the old red/green signals, confusing drivers with a whole new light to wory about. And even colored tum a rrow lights were introduced within most readers' lifetimes.

If you want to get financial with it, let's assume that IDOT is putting these up at the 100 intersections mentioned in the artic le ata cost of $\$ 1 M$. Thats $\$ 10,000$ per intersection. That means if each new signal upgrade prevents one single accident where a vehicle gets totaled, there's an overall cost benefit for the improvement Note that that's not one accident a year; that's one accident FOR THE ULEIME OF THE SIGNAL That do esn't even include the costs of hospital bills in injury a c cidents, time paid for police, fire and medical crews responding to the accident, nor the lost travel time caused by accident delays.

GOOD POINT

- OKAY...call me stupid...but is it just me or does this a rtic le NOTtell us what the h*ll a flashing yellow light means?????? Seriously - I once lived in a city where the left tum signal would start fla shing red. I had no clue what to do - do I not tum? Do I wait? Do I go REALFAST? So what does a flashing yellow light mean exactly??? Good reporting PJ Star.

MUICD REQUIREMENIS (section 4D.04) Section 4D. 04 Meaning of Vehic ular Signal Indications

E. Flashing yellow signal indic ations shall have the following meanings:

1. Vehic ular traffic, on an approach to an intersection, facing a fla shing CIRCULAR YELLOW signal indic ation is permitted to cautiously enter the intersection to proceed straight through ortum right or left ormake a U-tum except as such movement is modified by lane-use signs, tum prohibition signs, lane markings, roadway design, separate tum signal indic ations, or other traffic control devices. Such vehicular traffic, including vehic les tuming right or left or making a U-tum, shall yield the right-of-way to:
A. Pedestria ns lawfully within an associated crosswalk, and
B. Other vehic les la wfully within the intersection

In addition, vehicular traffic tuming left ormaking a U-tum to the left shall yield the right-ofway to other vehic les approa ching from the opposite direction so closely as to constitute an immediate hazard during the time when such tuming vehicle is moving across or within the intersection.

MUICD REQUIREMENIS (section 4D.04)

2. Vehic ular traffic, on an approach to an intersection, facing a flashing YEШOW ARROW signal indic ation, displa yed alone or in combination with a nother signal indic a tion, is permitted to cautiously enter the intersection only to make the movement ind ic ated by such a rrow, or other such movement as is permitted by other signal indic ations displayed at the same time. Such vehic ular traffic, including vehic les tuming nght or left or making a U-tum, shall yield the right-of-way to:
A. Pedestria ns la wfully within an assoc iated crosswalk, a nd
B. Other vehic les la wfully within the intersection

In addition, vehic ular traffic tuming left or making a U-tum to the left shall yield the right-of-way to other vehicles approaching from the opposite direction so closely. as to constitute an immediate hazard duning the time when such tuming vehic le is moving a cross or within the intersection

MUICD REQUIREMENTS (section 4D.04)

3. Pedestria ns facing a ny fla shing yellow signal indic ation at an intersection, unless otherwise directed by a pedestrian signal indic ation or other traffic control device, are pemitted to proceed across the roadway within any marked or unmarked associated crosswalk. Pedestrians shall yield the right-ofway to vehic les la wfully within the intersection at the time that the flashing yellow signal indication is first displa yed.
4. When a fla shing CIRCULAR YEШOW signal indic ation(s) is displayed as a beacon (see Chapter 4L) to supplement a nother traffic control device, road users are notified that there is a need to pay extra attention to the message conta ined thereon or that the regulatory or wa ming requirements of the other traffic control device, which might not be a pplicable at all times, a re currently applicable.

MUICD REQUIREMENIS (section 4D.20)

Section 4D. 20 Signal Indic ations for Protected/ Permissive

Mode Left-Tum Movements

If a separate left-tum signal face is being operated in a protected/permissive left-tum mode and a flashing left-tum yellow a rrow signal indic ation is provided, it shall meet the following requirements (see Figure 4D-12):
A. It shall be capable of displaying the following signal indic ations: steady left-tum RED ARROW, steady left-tum YELLOW ARROW, fla shing left-tum YELLOW ARROW, a nd left-tum GREEN ARROW. Only one of the four indic ations shall be displayed at any given time.
B. During the protected left-tum movement, a left-tum GREEN ARROW signal indic ation shall be displayed.
C. A steady left-tum YELLOW ARROW signal indic ation shall be displayed following the lefttum GREEN ARROW signal indic ation.
D. During the permissive left-tum movement, a fla shing left-tum YELLOW ARROW signal indic ation shall be displayed.

MUTCD REQUIREMENIS (section 4D.20)

E. A steady left-tum YELLOW ARROW signal indic ation shall be displayed following the flashing left-tum YELLOW ARROW signal indic ation if the permissive left-tum movement is being terminated and the separate left-tum signal face will subsequently display a stea dy left-tum RED ARROW indication.
F. It shall be permitted to display a fla shing left-tum YEШOW ARROW signal indication for a permissive left-tum movement while the signal faces for the adjacent through movement display steady CIRCULAR RED signal indications and the opposing left-tum signal faces display left-tum GREEN ARROW signal indications for a protected left-tum movement.
G. When a permissive left-tum movement is changing to a protected left-tum movement, a left-tum GREEN ARROW signal indic ation shall be displa yed immediately upon the termination of the fla shing left-tum YEШOW ARROW signal indic ation. A steady left-tum YELOW ARROW signal indic ation shall not be displayed between the display of the fla shing left-tum YELLOW ARROW signal indic ation and the display of the steady left-tum GREEN ARROW signal indic ation.

MUICD REQUIREMENIS (section 4D.20)

H. The display shall be a four-section signal face except that a three-section signal face containing a dual-a rrow signal section shall be permitted where signal head height limitations (or lateral positioning limitations for a horizo ntally-mounted signal face) will not permit the use of a four-section signal face. The dual-a rrow signal section, where used, shall display a GREEN ARROW for the protected left-tum movement and a flashing YELLOW ARROW for the permissive left-tum movement.
I. During steady mode (stop-and-go) operation, the signal section that displays the steady left-tum YELLOW ARROW signal indication during change intervals shall not be used to display the fla shing left-tum YELLOW ARROW signal indic ation for permissive left tums.
J. During flashing mode operation (see Section 4D.30), the display of a flashing left-tum YELLOW ARROW signal indication shall be only from the signal section that displays a steady left-tum YELLOW ARROW signal indication during steady mode (stop-a nd-go) operation

MUICD GUIDANCE

- "Guidance:
- 09 For new or reconstructed signal installations, on an approach with an exclusive tum lane(s) for a left-tum (or U-tum to the left) movement and with opposing vehic ular traffic, signal faces that display a CIRC ULAR GREEN signal indic ation should not be post-mounted on the far-side median or mounted overhead above the exclusive tum lane(s) or the extension of the lane(s)."

MUICD GUIDANCE

- "If a separate left-tum signal face is mounted overhead at the intersection, it is positioned over the extension of the left-tum lane. In a sepa rate left-tum signal face, a fla shing left-tum YEШOW ARROW signal indic ation or a fla shing left-tum RED ARROW signal indic ation is used to control permissive left-tuming movements."

FYA OPERATION

- How it Works

SOLD RED - means stop, drivers tuming left must stop

SOLD YELIOW - ind ic a tes this traffic signal will be tuming red

FLASHING YELIOV- means tums a re permitted, but you must first yield to oncoming traffic \& pedestrians, then proceed with caution

SOLD G REEN - tum left; oncoming traffic must stop

FYA OPERATION

- How it Works
- Flashing Yellow Arrows with Lead/Lag Sequence

FYA OPERATION

- Safety Benefits
- Original Protected/Permissive with Yellow Trap

FYA OPERATION

- Operational Benefits

Without FYA

FYA OPERATION

- Operational Benefits

FYA OPERATION

- Equipment
- Signal Heads
- Controller
- MMU
- Signage

FYA PLANNING

- Implementation Strategy
- Citywide vs. Coridor
- Public Education
- Identifying Appropriate Locations

FYA PLANNING

- Identifying Appropriate Locations

FYA PLANNING

- Determining Extent of Improvements

FYA DESIGN

- Required Components
- Controller
- Ec onolite ASC/3 or Higher
- Siemens M50 or Higher
- MMU
- EDI - MMU-16LE FYA
- Reno - V1.07.19 or Higher

FYA DESIGN

- Required Components
- Signal Heads
- Signage

LEFT TURN
YIELD
ON FLASHING
YELLOW
ARROW

$$
\geqslant / \pi / \mathbb{V / I}<\text { Indicates Flashing }
$$

FYA DESIGN

12-POSITION CABINET:		16-POSITION CABINET:	
LS 1	OLA (RL, YL, FYA)	LS 1	VEH ¢ 1 (GL)
LS 3	OLB (RL, YL, FYA)	LS 3	VEH \$ 3 (GL)
LS 5	OLC (RL, YL, FYA)	LS 5	VEH $\phi 5$ (GL)
LS 7	OLD (RL, YL, FYA)	LS 7	VEH $\phi 7$ (GL)
LS 9	VEH ¢ 1 (GL) / PED ${ }^{\text {2 }}$	LS 9	OLA (RL, YL, FYA)
LS 10	VEH ¢ 3 (GL) / PED $\phi 4$	LS 10	OLB (RL, YL, FYA)
LS 11	VEH ¢ 5 (GL) / PED ¢6	LS 11	OLC (RL, YL, FYA)
LS 12	VEH ¢ 7 (GL) / PED ¢8	LS 12	OLD (RL, YL, FYA)
N/A		LS 13	PED ${ }^{\text {2 }}$
N/A		LS 14	PED \$4
N/A		LS 15	PED ¢6
N/A		LS 16	PED ¢8

FYA IMPLEMENTATION

- Installation

FYA IMPLEMENTATION

- Programming - Siemens

$14|4|>\mid$ General Control λ Remote Flash λ Overlap λ Ring λ Alt Sequence λ Port1 Data λ Channel Output/ For Help, press F1

FYA IMPLEMENTATION

- Programming - Ec onolite

Elicus Duties fity

- Comoloce 1

FYA IMPLEMENTATION

- Signal Timing
- 24 Hour FYA Left Tum Wa rrant Analysis
- Phase Omit
- Overlap Omit

FYA IMPLEMENTATION
 - Obstacles

FYA EVALUATION
 - Analysis

BRADIEY RESEARCH

- Literature Review
- Driver Survey
- Gap Acceptance
- Crash Analysis

COMPARATIVE SURVEY RESULTS

- If you want to tum left, a nd you see the traffic signal below, what would you do?

Phase 1
GO-4 \%
YIEID-91\%
STOP-4\%

Phase 2
GO-3 \%
YIEID - 94\%
STOP-3\%

COMPARATIVE SURVEY RESULTS

- If you want to tum left, a nd you see the traffic signal below, what would you do?

Phase 1
GO-4 \%
YIEID - 73\%
STOP- 23\%

COMPARATIVE SURVEY RESULTS

- If you want to tum left, a nd you see the traffic signal below, what would you do?

Phase 1
GO-1 \% YIEID - 97\%
STOP-2\%

Phase 2
GO-0 \%
YIEID - 98\%
STOP-2\%

B\&A CRASH FREQUENCY RESULTS

- 164 FY Approaches

	FI NAL RESULTS				
Crash Type	Before	After	$\%$ Reduction	Significant?*	
Total crash frequency	328	324.00	1.20%	No	
Injury crash frequency	97	86.00	11.30%	No	
LT related crash frequency	125	96.00	$\mathbf{2 3 . 2 0 \%}$	Yes	
LTOT crash frequency	90.33	68.67	$\mathbf{2 4 . 0 0 \%}$	Yes	

*Based on Poisson test at 95\% LOC Data Through June 2014

B\&A CRASH FREQUENCY RESULTS

- 92 FYA Approaches with supplemental signage

	FI NAL RESULTS			
Crash Type	Before	After	\% Reduction	Significant?*
Total crash frequency	182	166.67	8.40%	No
Injury crash frequency	55.33	46.33	16.30%	No
LT related crash frequency	72.33	50.00	$\mathbf{3 0 . 9 0 \%}$	Yes
LTOT crash frequency	49.67	35.33	$\mathbf{2 8 . 9 0 \%}$	Yes

*Ba sed on Poisson test at 95\% LOC Data Through June 2014

B\&A CRASH FREQUENCY RESULTS

- 72 FYA Approaches without supplemental signage

	FI NAL RESULTS			
Crash Type	Before	After	\% Reduction	Significant?*
Total crash frequency	146.67	159.00	-8.40%	No
Injury crash frequency	41.67	40.00	4.00%	No
LT related crash frequency	52.67	46.67	11.40%	No
LTOT crash frequency	40.67	34.00	16.40%	No

*Based on Poisson test at 95\% LOC Data Through June 2014

		B\&A - I ntersection				EB - Intersection			
	Crash Type	Before	After	\% Reduction	Significant?*	Expected	Actual	\% Reduction	Significant?*
	Total crash frequency	554	548.33	1.02\%	No	560.74	548.33	2.21\%	No
	I njury crash frequency	154.33	139	9.94\%	No	161.5	139	13.93\%	Yes
	LT related crash frequency	158.33	123	22.32\%	Yes	159.27	123	22.77\%	Yes
*Based on Poisson test at 95\% LOC Data Through J une 2014	LTOT crash frequency	99.67	78	21.74\%	Yes	99.05	79	20.25\%	Yes
		B\&A - Approach				EB - Approach			
	Crash Type	Before	After	\% Reduction	Significant?*	Expected	Actual	\% Reduction	Significant?*
	Total crash frequency	328	324	1.20\%	No	327.66	342	1.12\%	No
	I njury crash frequency	97	86	11.30\%	No	97.23	86	11.55\%	No
	LT related crash frequency	125	96	23.20\%	Yes	125.16	96	23.30\%	Yes
	LTOT crash frequency	90.33	68.67	24.00\%	Yes	91.34	68.67	24.82\%	Yes

B\&A CRASH PREQUENCY RESULTS

- Older Driver Crashes

	I NTERSECTI ON			APPROACH		
Crash Type	Before	After	\% Reduction*	Before	After	\% Reduction*
Total crash frequency	105.67	115.67	-9.46%	68.67	74.67	-8.74%
Injury crash frequency	31.33	30	4.36%	20.67	21	-1.61%
LT related crash frequency	34.67	35.33	-1.92%	27.33	28.67	-4.88%
LTOT crash frequency	20.67	24.33	-17.74%	18	22.67	-25.93%

> No signific ant results - No change in older driver crashes due to FYA *Based on Poisson test at 95\% LOC Data Through June 2014

YOUNGER DRVER

Table 7.4 Younger Driver Analysis Results

Aggregated on an Intersection-Level					Aggregated on an FYA Approach-Level			
Crash Type	Avg. Annual Before Crashes	Avg. Annual After Crashes	\% Reduction	Significant?* (p-value)	Avg. Annual Before Crashes	Avg. Annual After Crashes	\% Reduction	Significant?* (p-value)
Total crashes	160.33	139.67	12.9\%	$\begin{gathered} \hline \text { Yes } \\ (0.05) \end{gathered}$	98.67	82.33	16.6\%	$\begin{gathered} \hline \text { Yes } \\ (0.05) \end{gathered}$
Injury crashes	43.33	28.67	33.9\%	$\begin{gathered} \text { Yes } \\ (0.02) \end{gathered}$	31.00	18.00	41.9\%	$\begin{gathered} \text { Yes } \\ (0.01) \end{gathered}$
LT related crashes	52.00	34.33	34.0\%	$\begin{gathered} \text { Yes } \\ (0.01) \end{gathered}$	43.33	26.67	38.5\%	$\begin{gathered} \text { Yes } \\ (0.01) \end{gathered}$
LTOT crashes	35.33	25.00	29.3\%	$\begin{gathered} \hline \text { Yes } \\ (0.05) \end{gathered}$	32.33	20.67	36.1\%	$\begin{gathered} \hline \text { Yes } \\ (0.03) \end{gathered}$

* Based on Poisson Test of crash frequencies at 95\% LOC and significance level $\alpha=0.05$

BENEFTCOSTRATIO

Table 8-3. Resulting Annual Benefits and Costs of FYA

FYA EUAB	$\$ 1,630,060$
FYA EUAC	$\$ 82,460$
B/C Ratio	19.8

Lessons Leamed
 - Challenges

WHATDID THE CHANGE TO FYA INVOLVE

- New signal heads
- Additional cable
- New controller - Maybe
- New cabinet - Maybe
- Rewire cabinet
- Reprogram Controller
- New MMU

CHALENGES

- Controller Eagle/Ec onolite.
- Software
- MMU
- Conduit
- Training
- Vehicle Code
- Pedestrian Crossings
- Signs
- Left tum lane configuration

SIGNS

PASADENA CALFORNIA

IEFTTURN TRAP

- Lead - Lag Lefts
- Progression - Great results
- Crashes-Lake St. Left Tum crashes 3 to 14
- Louvers?
- Patience?
- Left tum sight distance?

IEFTTURN BAY TREATMENIS

QUESTIONS?

Thank You!

Mike Dolde, PE, PTOE
Senior Transportation Engineer
CBB
Mdolde@cbbtraffic.com

Randy Laninga
Traffic Engineer
Illino is Department of Transportation
Randall.Laninga @llinois.gov

