I-74 over the Mississippi River Design and Construction of Arch Foundations

104th Transportation and Highway Engineering Conference

Presented by: Andrew J. Keaschall, PE, SE, Alfred Benesch & Company

February 27th, 2018

o Cities,, and Rock Island Counties

OWNERS AND KEY STAKEHOLDERS

DESIGN TEAM

FLUIDCLARITY

CONSTRUCTION ENGINEERING AND INSPECTION

HNTB

GEC TEAM

Engineers & Architects

North Section – Middle Road to 67th Street (3.3 miles)

Central/South Section -Middle Road (IA) to 27th Street (IL) (4.5 miles)

benesch

MISSISSIPPI RIVER SPANS

- o "Bank-to-bank" is about 3,300 feet
- Plate Girder approach spans north and south of the Main Span
- o Shallow Water on the Illinois side
- Clear distances between existing and proposed structure
 - 60' at north (lowa) end
 600' at south (Illinois) end

EXISTING NORTHBOUND BRIDGE

Open to Traffic in 1935 – 15 Cent Toll
Construction Cost - \$1.5 Million

EXISTING NORTHBOUND BRIDGE

1930's

Source: Upper Mississippi Valley Digital Image Archive

EXISTING NORTHBOUND BRIDGE

EXISTING SOUTHBOUND BRIDGE

l

Southbound Bridge Construction in 1959

be

EXISTING BRIDGES

l

Twin Suspension Bridges Converted to I-74 in 1970's

EXISTING BRIDGES

PROPOSED BRIDGES

l

Twin Basket Handle True Arches

PROPOSED BRIDGES

ARCH SPAN – SUPERSTRUCTURE

ARCH SPAN – SUPERSTRUCTURE

ARCH SPAN – ANCHORAGE

FOUNDATION DESIGN APPROACH

Pat Tillman Memorial Bridge at Hoover Dam Bypass

- True Arch Foundation (Main)
 Objectives
 - Support Vertical LoadsResist Thrust

Photo Courtesy of Wikipedia

FOUNDATION DESIGN APPROACH

Six individual Foundation Elements (middle ribs share a foundation element

FOUNDATION DESIGN APPROACH

O Preliminary Plans proposed two foundation alternates

- Drilled Shafts with Waterline Cap
- Spread Footing on Rock

• Site Specific Challenges

Variability in the rock type and quality
Relatively flat riverbed
Minimal (if any) soil overburden
Bedding planes within the limestone

DRILLED SHAFT ALTERNATE

O Challenges

- Need to control shaft deflection to ensure proper arch behavior
- Very high sustained shear and flexure loads for the life of the structure
- \circ Creep was a concern
- Shaft sizes and layout ended up being impractical

SPREAD FOOTING ALTERNATE

• Challenges

- \circ Variability in Rock quality
- Bedding planes in limestone could "slide"
- Uneven bearing capacity across the area of footing
- Must be cast "in the dry" in order to achieve desired behavior

SPREAD FOOTING ALTERNATE

- Ability to cast the footing in the dry created concerns
- Rock Grouting was not recommended as the pressures could actually fracture the rock instead of strengthen and seal
- Perimeter cutoff wall would be required to inhibit flow into the footing area.
- Cost of cut-off wall was substantial and required significant rock drilling

HYBRID FOOTING ALTERNATE

- "Re-purposed" the rock drilling such that it could be part of the permanent load path
- Maintain the footing as near as possible to the riverbed
- Shaft height is significantly less
 than the waterline footing option
- Allows for use of more conventional cofferdam (although there is still no overburden)
- Created two fully adequate load paths for the thrust forces (shafts, and interface friction)

BENCH MARK NO. 500: STA. 6781+18.92 LT. 161.19' ELEV. 575.797, CHISELED "X" IN BOLT E. SIDE CONCRETE STRUCTURE.

HYBRID FOOTING ALTERNATE

- **Step 1:** Remove loose rock and soil in the area of the shafts and footing
- Step 2: Place Drilled Shafts. Casing will extend above river elevation, but top of shaft is near bedrock
- Step 3: Construct cofferdam
- Step 4: Remove loose material and place seal coat
- Step 5: Dewater cofferdam, trim casings and prep bottom of footing
- Step 6: Form and pour footing

ARCH SPAN – HYBRID FOUNDATION

ARCH SPAN – HYBRID FOUNDATION

- $\,\circ\,$ A total of 37 shafts for the 6 individual foundation elements
- Each Shaft is 10' in diameter with 9.5' diameter rock sockets

• Top of shaft is near bedrock

Length of shafts varies from 22' to 36'

BID OPENING APRIL 25, 2017

- Iowa used an "Optional Tie" between the approach spans and the Main Span.
- Five bidders submitted for the combined work for the approach spans and the main span.

Bidder Name	DBE	Bid Amount
LUNDA CONSTRUCTION CO.	5.09%	\$322,067,927.86
WALSH CONSTRUCTION CO II, LLC & AMERICAN BRIDGE CO I-74, JV	5.09%	\$357,790,073.13
TRAYLOR BROS., INC & MASSMAN CONSTRUCTION CO., JV	5.05%	\$368,425,183.25
KRAEMER AMES OBAYASHI, JOINT VENTURE	5.01%	\$375,790,068.16
JOHNSON BROS CORP & RENDA CONTRC., JV	5.42%	\$416,249,971.17

REMOVE LOOSE ROCK AND SOIL

REMOVE LOOSE ROCK AND SOIL

CONSTRUCT COFFERDAM

CONSTRUCT COFFERDAM

PLACE SEAL COAT

PLACE SEAL COAT

DEWATER AND PREPARE BASE

DEWATER AND PREPARE BASE

FORM AND POUR FOOTING

FORM AND POUR FOOTING

FOUNDATION CHALLENGES

- Variability in Rock Quality and top of rock elevation
- Differing depths required to set the permanent casing
- "Cavern" at one drilled shaft
 (subsequently filled with
 concrete and re-drilled)
- Soft Spot near pier 13WB(same pier as the cavern)

CURRENT STATUS

- All 37 main span foundation shafts have been placed
- Cofferdams in placed at 5 locations
- Seal coats installed at 4 locations
- Footing installed at one location

I-74 over the Mississippi River Design and Construction of Arch Foundations

THANK YOU!

QUESTIONS?

APPROACH SPANS AND VIADUCT PIERS

At Normal Pool River Levels

APPROACH SPANS

The approach spans consist of:
90" deep continuous hybrid, weathering steel plate girders
2 course, 10" thick, cast-in-place concrete deck

benesch

MULTI-USE TRAIL – PEDESTRIAN OVERLOOK

MULTI-USE TRAIL – PEDESTRIAN OVERLOOK

MULTI-USE TRAIL – PEDESTRIAN OVERLOOK

BETTENDORF LET-DOWN STRUCTURE

ARCH SPAN – AESTHETIC LIGHTING

ARCH SPAN – AESTHETIC LIGHTING

ARCH SPAN – COLOR CHANGING LIGHTING

ARCH SPAN – COLOR CHANGING LIGHTING

PIER LIGHTING

100

AESTHETIC LIGHTING – RIVER SPANS

I-74 over the Mississippi River Design and Construction of Arch Foundations

THANK YOU!

QUESTIONS?

