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Why are tied arches important?
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Typical span ranges for various long-span bridge types…

Ø Composite steel girders
Ø Segmental concrete box
Ø Steel through truss
Ø Steel tied arch
Ø Cable stayed
Ø Suspension

< 500’ 
< 600’ 

300’ – 600’
400’ – 1000’
600’ – 2000’ 
> 1500’
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300’ – 600’
400’ – 1000’
600’ – 2000’ 
> 1500’

There are other 
options in the tied-arch 
span range 
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Typical span ranges for various long-span bridge types…

Ø Composite steel girders
Ø Segmental concrete box
Ø Steel through truss
Ø Steel tied arch
Ø Cable stayed
Ø Suspension

< 500’ 
< 600’ 

300’ – 600’
400’ – 1000’
600’ – 2000’ 
> 1500’

Only the tied arch is ideally suited to a single-span layout 

Many water crossings require only one long navigational span 
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Typical span ranges for various long-span bridge types…

Ø Composite steel girders
Ø Segmental concrete box
Ø Steel through truss
Ø Steel tied arch
Ø Cable stayed
Ø Suspension

< 500’ 
< 600’ 

300’ – 600’
400’ – 1000’
600’ – 2000’ 
> 1500’

Only the tied arch is ideally suited to a single-span layout 

A common river-crossing configuration:
Ø One tied arch span of 500’-900’
Ø Composite steel approach spans of 150’-250’
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What is an arch?
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Justice Potter Stewart
Member of Supreme Court 1958-1981 
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“I know it when I see it”
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I know an arch when I see it
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What is an arch?

Gravity Load

Compressive 
Stresses in 
Structure
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ARCH

No flexure due 
to uniform load
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“TRUE”
or 

“THRUST” 
ARCH

Thrust at ends 
resisted by foundation
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Horiz component of thrust at 
ends resisted by tie

Thrust at ends 
resisted by foundation

“TRUE”
or 

“THRUST” 
ARCH

TIED 
ARCH
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TIED 
ARCH

Horiz component of thrust at 
ends resisted by tie

Thrust at ends 
resisted by foundation

Typically much simpler for river crossings

“TRUE”
or 

“THRUST” 
ARCH

Convenient between “natural” abutments
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TIED 
ARCH

Horiz component of thrust at 
ends resisted by tie
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HANGERS

TIED 
ARCH

ARCH RIB

TIE
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DECK

TIED 
ARCH
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DECK

TIED 
ARCH

DECK
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DECK

TIED 
ARCH

HYBRID 
TIED ARCH

DECK

TIED ARCH CANTILEVERCANTILEVER

TIED ARCH
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DECK

TIED 
ARCH

HYBRID 
TIED 

ARCH

DECK

Ø Same span & 
same overall 
arch size

Ø Same height 
of deck above 
water

Nair 24

DECK

TIED 
ARCH

HYBRID 
TIED 

ARCH

DECK

NAVIGATIONAL 
CLEARANCE

NAVIGATIONAL 
CLEARANCE

Ø Same span & 
same overall 
arch size

Ø Same height 
of deck above 
water
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DECK

TIED 
ARCH

HYBRID 
TIED 

ARCH

DECK

NAVIGATIONAL 
CLEARANCE

NAVIGATIONAL 
CLEARANCE

Ø Same span & 
same overall 
arch size

Ø Same height 
of deck above 
water

X X XXX X
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DECK

TIED 
ARCH

HYBRID 
TIED 

ARCH

DECK
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DECK

TIED 
ARCH
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Little flexure or deflection 
due to uniform load

TIED 
ARCH
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TIED 
ARCH

Flexure & deflection due 
to non-uniform load
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TIED 
ARCH

Resisted by flexural 
stiffness of rib and/or tie

Flexure & deflection due 
to non-uniform load
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Most recent large tied-arch 
bridges have used the tie 

girders as the main stiffening 
elements

Ribs just stiff enough to resist 
buckling
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Resisted by flexural 
stiffness of rib and/or tie

Flexure & deflection due 
to non-uniform load
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Resisted by flexural 
stiffness of rib and/or tie

Flexure & deflection due 
to non-uniform load

Or by 
“network” 

hangers
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Network hangers make the tied arch 
behave almost like a truss, with the 
rib and tie as the truss chords
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Network hangers make the tied arch 
behave almost like a truss, with the 
rib and tie as the truss chords

Network hangers can also improve 
redundancy
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Loss of one 
hanger doubles 
unsupported 
length of rib and 
tie

Loss of one 
hanger does not 
increase 
unsupported 
length of rib or tie

NETWORK HANGERS VERTICAL HANGERS
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Loss of one 
hanger doubles 
unsupported 
length of rib and 
tie

VERTICAL HANGERS
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X

Consider the 
effect of loss of 
one hanger…
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Consider the 
effect of loss of 
one hanger…

Unsupported tie is 
usually not a problem. 
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Consider the 
effect of loss of 
one hanger…

Unsupported tie is 
usually not a problem. 

Tie girder can transfer deck 
load to intact hanger. 
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Consider the 
effect of loss of 
one hanger…

Unsupported rib 
can be a problem 

Unsupported tie is 
usually not a problem. 

Tie girder can transfer deck 
load to intact hanger. 
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Consider the 
effect of loss of 
one hanger…

Arch rib is 
curved 

Thrust line 
is straight 
between 
hangers 
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Consider the 
effect of loss of 
one hanger…

Offset, e, 
causes 

flexure in rib 
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Consider the 
effect of loss of 
one hanger…

Offset, e, 
causes 

flexure in rib 

Doubling the hanger 
spacing increases the 

offset four-fold 
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Offset, e, 
causes 

flexure in rib 

Doubling the hanger 
spacing increases the 

offset four-fold 

EXAMPLE
Arch with 

span=600’; rise=120’ 
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Offset, e, 
causes 

flexure in rib 

Doubling the hanger 
spacing increases the 

offset four-fold 

EXAMPLE
Arch with 

span=600’; rise=120’ 

Hanger     
Spacing

45’

Offset   
e

0.675’
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Offset, e, 
causes 

flexure in rib 

Doubling the hanger 
spacing increases the 

offset four-fold 

EXAMPLE
Arch with 

span=600’; rise=120’ 

Hanger     
Spacing

45’
90’  

Offset   
e

0.675’
2.70’  
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Offset, e, 
causes 

flexure in rib

Doubling the hanger 
spacing increases the 

offset four-fold 

EXAMPLE
Arch with 

span=600’; rise=120’ 

Hanger     
Spacing

45’
90’  

Offset   
e

0.675’
2.70’  

May cause 
failure of rib
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X

If a hanger is lost…
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X

If a hanger is lost…

Ø The most likely failure mode is not
downward collapse of the tie and deck

This is 
unlikely
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X

If a hanger is lost…

Ø The most likely failure mode is not 
downward collapse of the tie and deck

Ø It is upward failure of the arch rib 
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If a hanger is lost…

Ø The most likely failure mode is not 
downward collapse of the tie and deck

Ø It is upward failure of the arch rib 

In a network arch…

Ø The rib will not lose support from loss 
of single hanger
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If a hanger is lost…

Ø The most likely failure mode is not 
downward collapse of the tie and deck

Ø It is upward failure of the arch rib 

In a network arch…

Ø The rib will not lose support from loss 
of single hanger

Even loss of all cables at 
a single deck location 

will not cause the rib to 
lose support 
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There are genuine benefits to the network 
arch concept, but vertical hangers remain 

the default solution  
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Now let’s focus on two 
real bridges…
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Jefferson Barracks
I-255 / Mississippi

St Louis

Twin Bridges 
909’ span  
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Vierendeel strut

Arch
rib

Hanger

Floor beam

Diagonal bracing

Concrete deck* 
on steel stringers*

*Expansion joints in the deck and stringers uncouple 
them from the arch structure 

Tie girder
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Vierendeel strut

Arch
rib

Hanger

Floor beam

Diagonal bracing

Concrete deck* 
on steel stringers*

*Expansion joints in the deck and stringers uncouple 
them from the arch structure 

Tie girder
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Vierendeel strut

Arch
rib

Hanger

Floor beam

Diagonal bracing

Concrete deck* 
on steel stringers*

*Expansion joints in the deck and stringers uncouple 
them from the arch structure 

Tie girder

Other bridges use box-section 
tie girders; primarily because 
they are considered better for 
torsion
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Vierendeel strut

Arch
rib

Hanger

Floor beam

Diagonal bracing

Concrete deck* 
on steel stringers*

*Expansion joints in the deck and stringers uncouple 
them from the arch structure 

Tie girder

Overall torsional 
stiffness is important
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Vierendeel strut

Arch
rib

Hanger

Floor beam

Diagonal bracing

Concrete deck* 
on steel stringers*

*Expansion joints in the deck and stringers uncouple 
them from the arch structure 

Tie girder

Bridges get their overall 
torsional stability not like this…
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Vierendeel strut

Arch
rib

Hanger

Floor beam

Diagonal bracing

Concrete deck* 
on steel stringers*

*Expansion joints in the deck and stringers uncouple 
them from the arch structure 

Tie girder

…but like this
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Vierendeel strut

Arch
rib

Hanger

Floor beam

Diagonal bracing

Concrete deck* 
on steel stringers*

*Expansion joints in the deck and stringers uncouple 
them from the arch structure 

Tie girder

Essentially no loss of overall 
torsional stiffness due to switch 
from box-section to I-section ties 
of the same vertical stiffness
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Vierendeel strut

Arch
rib

Hanger

Floor beam

Diagonal bracing

Concrete deck* 
on steel stringers*

*Expansion joints in the deck and stringers uncouple 
them from the arch structure 

Tie girder

There are important benefits to 
the I section
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I-Section Tie Girders 
Benefits —

Ø Much more economical to 
build and maintain
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I-Section Tie Girders 
Benefits —

Ø Much more economical to 
build and maintain

§ Slightly less steel 

§ Much lower fabrication 
cost

§ Simpler connections

§ Much easier inspection
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I-Section Tie Girders 
Benefits —

Ø Much more economical to 
build and maintain

§ Slightly less steel 

§ Much lower fabrication 
cost

§ Simpler connections

§ Much easier inspection

Ø Avoids secondary stress 
issues at floor beam 
connections
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I-Section Tie Girders 
Benefits —

Ø Much more economical to 
build and maintain

§ Slightly less steel 

§ Much lower fabrication 
cost

§ Simpler connections

§ Much easier inspection

Ø Avoids secondary stress 
issues at floor beam 
connections

Tie girder torsionally 
stiff

High end moment 
due to FB deflection
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I-Section Tie Girders 
Benefits —

Ø Much more economical to 
build and maintain

§ Slightly less steel 

§ Much lower fabrication 
cost

§ Simpler connections

§ Much easier inspection

Ø Avoids secondary stress 
issues at floor beam 
connections

Tie girder torsionally 
flexible

Little end moment 
due to FB deflection

Tie girder torsionally 
stiff

High end moment 
due to FB deflection
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Rib-Tie 
“Knuckle” box tie

Side plates in 
same plane

“Typical” knuckle 
connection



box tie

Side plates in 
same plane

“Typical” knuckle 
connection

… requires rib and tie of 
same width, usually not 
optimum

Side plates in 
same plane; 
sometimes a 
single plate

“Typical” knuckle 
connection

box tie

Side plates in 
same plane; 
sometimes a 
single plate; 
may add 
internal plates

“Typical” knuckle 
connection

box tie

Troublesome 
welds & stress 
concentrations

“Typical” knuckle 
connection

box tie
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Rib-Tie 
Knuckle with 
I-Section Tie
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Floor 
beam

C TieL

TIE-RIB “KNUCKLE” 
CONNECTION
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Floor 
beam

C TieL

TIE-RIB “KNUCKLE” 
CONNECTION

All forces between 
rib and tie are 
transferred by in-
plane loading of 
plates through fillet 
welds
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Floor 
beam

C TieL

TYPICAL FLOOR BEAM 
AND HANGER 

CONNECTIONS 
TO TIE

Cables

Floor 
beam

TIE-RIB “KNUCKLE” 
CONNECTION
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Stability Design of Tied-Arch Bridges —

Textbooks and AASHTO stated at the time (1980) that 
tied arches were not susceptible to in-plane instability.
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Textbooks and AASHTO stated at the time (1980) that 
tied arches were not susceptible to in-plane instability.

The reason given was that 2nd-order effects in the rib 
and tie counteracted each other.

Stability Design of Tied-Arch Bridges —
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Textbooks and AASHTO stated at the time (1980) that 
tied arches were not susceptible to in-plane instability.

The reason given was that 2nd-order effects in the rib 
and tie counteracted each other.

Stability Design of Tied-Arch Bridges —

The horizontal components 
of rib compression and tie 
tension are equal.
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Textbooks and AASHTO stated at the time (1980) that 
tied arches were not susceptible to in-plane instability.

The reason given was that 2nd-order effects in the rib 
and tie counteracted each other.

Stability Design of Tied-Arch Bridges —

The horizontal components 
of rib compression and tie 
tension are equal.

Vertical displacements of 
rib and tie are equal 
(because of the hangers).
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Textbooks and AASHTO stated at the time (1980) that 
tied arches were not susceptible to in-plane instability.

The reason given was that 2nd-order effects in the rib 
and tie counteracted each other.

Stability Design of Tied-Arch Bridges —

The horizontal components 
of rib compression and tie 
tension are equal.

Vertical displacements of 
rib and tie are equal 
(because of the hangers).

The disturbing effect of rib 
displacement is balanced 
by the restoring effect of tie 
displacement.
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Textbooks and AASHTO stated at the time (1980) that 
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Stability Design of Tied-Arch Bridges —

The horizontal components 
of rib compression and tie 
tension are equal.

Vertical displacements of 
rib and tie are equal 
(because of the hangers).

The disturbing effect of rib 
displacement is balanced 
by the restoring effect of tie 
displacement.

And therefore, in-plane 
instability is not an issue. 
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Textbooks and AASHTO stated at the time (1980) that 
tied arches were not susceptible to in-plane instability.

The reason given was that 2nd-order effects in the rib 
and tie counteracted each other.

Stability Design of Tied-Arch Bridges —

The horizontal components 
of rib compression and tie 
tension are equal.

Vertical displacements of 
rib and tie are equal 
(because of the hangers).

The disturbing effect of rib 
displacement is balanced 
by the restoring effect of tie 
displacement.

And therefore, in-plane 
instability is not an issue. 

?
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Stability Design of Tied-Arch Bridges —

Disproved in two papers:

Ø “Buckling and Vibration of Arches 
and Tied Arches” by R.S. Nair, 
Journal of Structural Engineering, 
ASCE, June 1986

Ø “Practical Application of Energy 
Methods to Stability Problems” by 
R.S. Nair, Engineering Journal, 
AISC, 4th Qtr. 1997

And therefore, in-plane 
instability is not an issue. 

?

Textbooks and AASHTO stated at the time (1980) that 
tied arches were not susceptible to in-plane instability.

The reason given was that 2nd-order effects in the rib 
and tie counteracted each other.
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Textbooks and AASHTO stated at the time (1980) that 
tied arches were not susceptible to in-plane instability.

The reason given was that 2nd-order effects in the rib 
and tie counteracted each other.

Lateral stability of the arch ribs was recognized as an 
issue, but 2nd-order analysis to account for it was 
considered to be beyond the level of technology 
available to bridge engineers.

Stability Design of Tied-Arch Bridges —
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Textbooks and AASHTO stated at the time (1980) that 
tied arches were not susceptible to in-plane instability.

The reason given was that 2nd-order effects in the rib 
and tie counteracted each other.

Lateral stability of the arch ribs was recognized as an 
issue, but 2nd-order analysis to account for it was 
considered to be beyond the level of technology 
available to bridge engineers.

The “two-percent rule” was often used for the design of 
bridge bracing, including bracing between arch ribs.

Stability Design of Tied-Arch Bridges —
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The “two-percent rule” —

P• P•

Design for shear of 2% of 
across every panel of 
bracing

P•
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The “two-percent rule” —

P• P•

P•

This is broadly similar to the 
“relative bracing” (2010) or 
“panel bracing” (2016) provisions 
of AISC 360

Design for shear of 2% of 
across every panel of 
bracing
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The “two-percent rule” —

P• P•

P•Design for shear of 2% of 
across every panel of 
bracing

This approach was not used 
for the JB Bridge
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The “two-percent rule” —

P• P•

P•Design for shear of 2% of 
across every panel of 
bracing

Instead, used 2nd-order analysis 
and a primitive form of today’s 

Direct Analysis Method
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Much less bracing than in 
other bridges of that time

Abraham Lincoln Bridge



Abraham Lincoln Bridge

Likely bracing design 
concept: the “2% rule”

Abraham Lincoln Bridge

Likely bracing design 
concept: the “2% rule”

Note low 
clearance

Jefferson Barracks Bridges

Note high 
clearance
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FABRICATION

A special technique was 
used to reduce flexure in 
the ribs and ties
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Cambered geometry*
Fabricate to this shape

•DL

Final geometry 
(loaded) 

*Final geometry 
minus all DL 
displacements

Cambered 
fabrication & 
assembly —

Fabrication 
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Final geometry 
(loaded) 

Fabrication 

*Final geometry 
minus all DL 
displacements

Cambered 
fabrication & 
assembly —

Dead load causes shortening of the 
rib and elongation of the tie; this 
produces downward deflection.

Cambered geometry*
Fabricate to this shape
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Final geometry 
(loaded) 

Fabrication 

*Final geometry 
minus all DL 
displacements

Cambered 
fabrication & 
assembly —

Dead load causes shortening of the 
rib and elongation of the tie; this 
produces downward deflection.

As a secondary effect, the deflection 
produces flexure in the rib and tie.

Cambered geometry*
Fabricate to this shape
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Final geometry 
(loaded) 

Fabrication 

*Final geometry 
minus all DL 
displacements

Cambered 
fabrication & 
assembly —

Dead load causes shortening of the 
rib and elongation of the tie; this 
produces downward deflection.

As a secondary effect, the deflection 
produces flexure in the rib and tie.

This secondary flexure can be eliminated 
by fabrication for “prestressed” assembly.

Cambered geometry*
Fabricate to this shape
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“Prestressed” 
assembly —

Fabricate to this shape*

Final geometry 
(loaded) 

Fabrication 

*Same shape as 
final, but rib longer 
and tie shorter to 
compensate for 
length changes 
under load
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“Prestressed” 
assembly —

Gap in tie in unstressed 
condition

Fabricate to this shape*

Final geometry 
(loaded) 

Fabrication 
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“Prestressed” 
assembly —

Assembled shape

Gap in tie in unstressed 
condition

“Prestress” to assemble 
…forcing it into the 

“assembled shape” shown

Fabricate to this shape

Final geometry 
(loaded) 

Fabrication 
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“Prestressed” 
assembly —

Assembled shape

Gap in tie in unstressed 
condition

“Prestress” to assemble

This induces moments opposite 
those that will be caused by 

dead load deflection

Fabricate to this shape

Final geometry 
(loaded) 

Fabrication 
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“Prestressed” 
assembly —

Assembled shape

Gap in tie in unstressed 
condition

“Prestress” to assemble

This induces moments opposite 
those that will be caused by 

dead load deflection

DL deflection relieves those 
induced moments

Fabricate to this shape

Final geometry 
(loaded) 

Fabrication 
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“Prestressed” 
assembly —

Assembled shape

Gap in tie in unstressed 
condition

“Prestress” to assemble

This induces moments opposite 
those that will be caused by 

dead load deflection

DL deflection relieves those 
induced moments

Fabricate to this shape

Final geometry 
(loaded) 

Fabrication 

This procedure, 
the fabrication 
dimensions and 
the forces at 
each stage were 
indicated in the 
drawings
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The innovations discussed…
Ø I-section tie girders
Ø Simple rib-tie knuckle connection
Ø DAM for economy and to reduce bracing
Ø Fabrication for prestressed erection
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The innovations discussed…
Ø I-section tie girders
Ø Simple rib-tie knuckle connection
Ø DAM for economy and to reduce bracing
Ø Fabrication for prestressed erection

Are all incorporated and refined in the design of 
Ø IL-104 Bridge over Illinois River in Meredosia

… now in late stages of construction
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The innovations discussed…
Ø I-section tie girders
Ø Simple rib-tie knuckle connection
Ø DAM for economy and to reduce bracing
Ø Fabrication for prestressed erection

Are all incorporated and refined in the design of 
Ø IL-104 Bridge over Illinois River in Meredosia

… now in late stages of construction

Modern DAM allowed fewer struts that in JB 
Bridge; no struts at hanger locations
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IL-104 Bridge on 8/22/2017
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IL-104 Bridge on 8/22/2017
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Rib-tie 
knuckle 
of IL-104 
Bridge
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Most recent large tied-arch 
bridges have used tie girders 

as the main stiffening 
elements

Ribs just stiff enough to resist 
buckling
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The stiff tie approach was adopted at 
Jefferson Barracks partly to ease 

construction…

Nair 120
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The stiff tie approach was adopted at Jefferson 
Barracks partly to ease construction… 

Same stiff tie approach was adopted for IL-104 
at Meredosia
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The stiff tie approach was adopted at Jefferson 
Barracks partly to ease construction… 

Same stiff tie approach was adopted for IL-104 
at Meredosia

But IL-104 was erected from above using 
erection towers
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The stiff tie approach was adopted at Jefferson 
Barracks partly to ease construction… 

Same stiff tie approach was used for Beardstown 
(US-67) and Meredosia (IL-104)

But IL-104 was erected from above using erection 
towers

… which would have permitted a big-rib, small-tie 
design
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The ultimate big-rib, small-tie design is a 
cable tie

Cables
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The ultimate big-rib, small-tie design is a 
cable tie

… as in EXP’s proposal for Division Street

Cables
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Cables

Cables

Cylindrical end 
floor beam
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Standard IDOT 
“semi-integral” 

abutment 
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BEARING
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Simple, economical, redundant, 
not fracture-critical

BEARING

Questions?



Questions?
shankar.nair@exp.com


