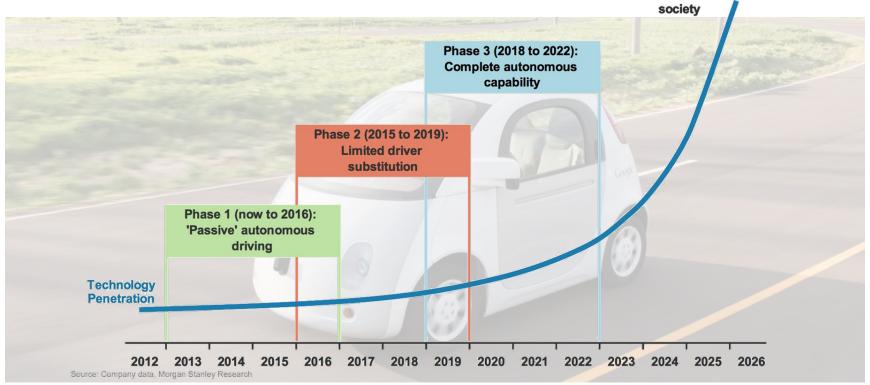
THE CONNECTED/ AUTOMATED VEHICLE WAVE:

What does it mean for the infrastructure industry?

Illinois Transportation and Highway Engineering Conference February, 2016

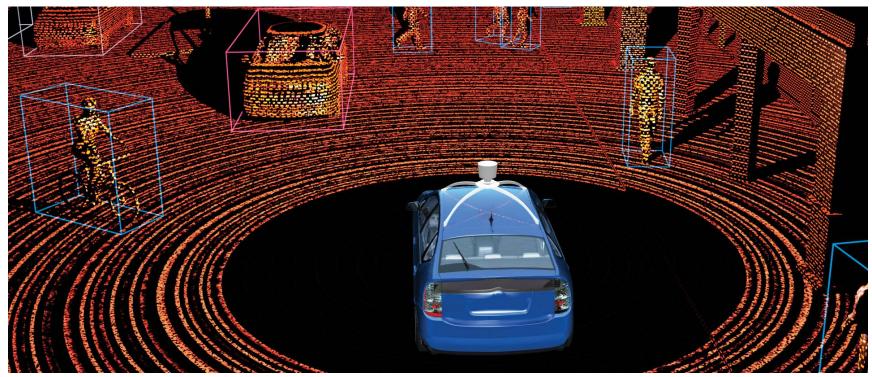
THE RACE TO DRIVERLESS



Source: Google

Phase 4 (two decades): 100% autonomous penetration, utopian

Source: Morgan Stanley



NHTSA AV LEVELS

Level 0	Level 1	Level 2	Level 3	Level 4
Driver only	Assisted	Partial	Conditional	Full
Φ	Active high beam	Traffic jam assist	Collision avoidance	Valet self-parking
Feature	Collision imminent braking	Adaptive cruise & lane keeping	Automated highway	Highway point-to-point
L.	Cruise control	Self-parking (with driver)	Automated urban	Urban point-to-point
	Radar	Radar	LIDAR & 360° radar	LIDAR & 360° radar
>	Forward sensors	Forward sensors	High accuracy GPS	High accuracy GPS
Technology		Multi-domain controller	Multi-domain controller	Multi-domain controller
		Driver state sensor	Forward, HD & IR cameras	Forward, HD & IR cameras
		V2X	V2X	V2X
			Internal moment unit	Internal moment unit
	Today		2020	2025+
				DELPH

IS THIS A CONNECTED CAR?

Source: Google

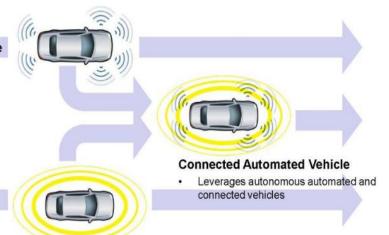
AV # CV # 1

WHAT IS CONNECTED?

- → Cooperative communications systems
- → Linking vehicles together, to the roadside, and to the "cloud"
- Interoperable systems that work across all equipment and manufacturers

WHY DOES AV SEEM TO BE GAINING GROUND ON CV?

- → Autonomous Vehicles
 - Market driven
 - Day-one benefit
 - No inter-operability required
- Connected Vehicles
 - Regulation required
 - Must be national, interoperable system
 - Day-one benefits more difficult to capture


CV AND AV ON A COLLISION COURSE

→ "Connected Vehicles give you further lines of safety that you couldn't get from an independent, autonomous vehicle"

> Mark Rosekind, NHTSA Administrator February, 2016

Autonomous Automated Vehicle

Operates in isolation from other vehicles using internal sensors

Connected Vehicle

- Communicates with nearby vehicles and infrastructure
- Not automated (level 0)

WHAT IS THE ROLE OF CV IN THE AV SPACE?

- → AV "sees" with sensors and must interpret environment
- → Sensors detect green indication, computer knows green means GO
- → No context beyond what human driver can see

WHAT IS THE ROLE OF CV IN THE AV SPACE?

- → In a CV environment, the other vehicles and the traffic signal are "talking" to the AV:
 - Phase state
 - Time to phase change
 - Real-time optimal progression speed
 - Real-time route guidance based on signal delay
 - Identification of hazards out of the view of sensor systems

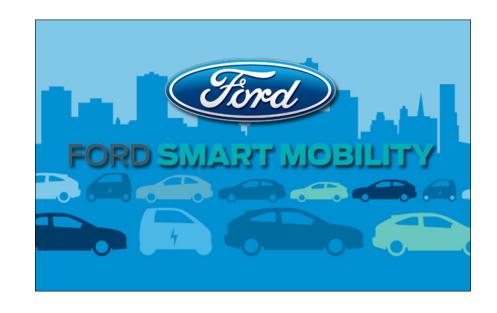
"The technology may be ready before society is."

Bill Ford, Jr., Chairman, Ford Motor Company *December*, 2015

The technology itself is not able to answer the societal impact questions

Insurance Industry **Increased VMT?** Disruption? Increased Urban Sprawl? Legal Liability? Revenue Impacts? Acceptance of Auto Industry

Disruption?

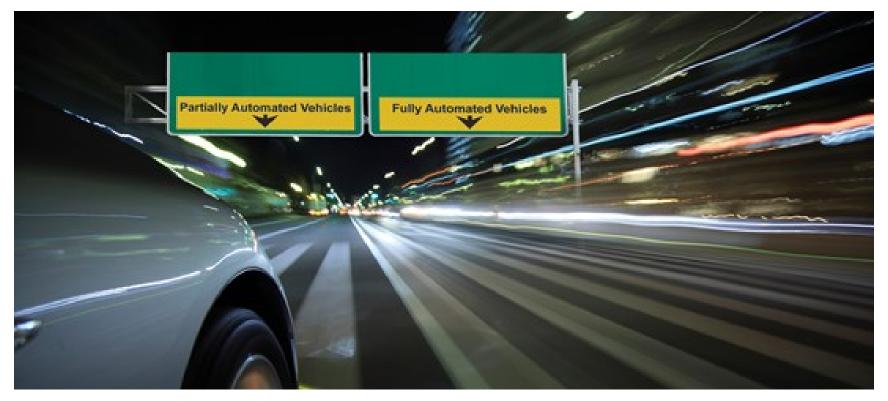


"Computer Driver"?

POTENTIAL TO CHANGE THE CAR OWNERSHIP PARADIGM

C/AV will impact everyone in this room

CHANGES IN ROADWAY CAPACITY


Under low-volume conditions, vehicles travel at high speeds with sufficient spacing

As volume increases, speed decreases as vehicle headways decrease

If AVs could operate at high speed with low headways, huge potential capacity increases

IS THIS OUR FUTURE?

CHANGES IN ROADWAY GEOMETRY

What if a twolane highway today...

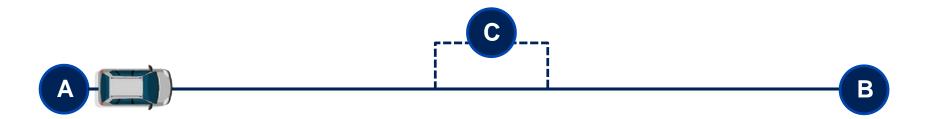
CHANGES IN ROADWAY GEOMETRY

What if a twolane highway today... ...could become a three-lane highway tomorrow?

CHANGES IN VEHICLE-MILES TRAVELED (VMT)

When driving time is "regained", how far might you ride in your car to work?

CHANGES IN CAR OWNERSHIP MODEL



What if this...

...increasingly became this

CHANGES IN TRIP BEHAVIOR/RIDE SHARING

What if during the automated taxi trip from A to B...

...the system could identify a compatible ride share in real-time...

...reducing the trip cost and number of trips on our roads

CHANGES TO REVENUE

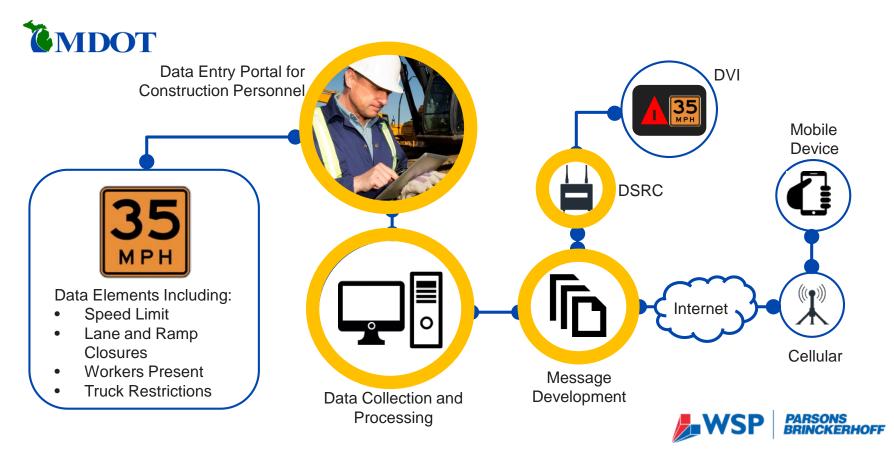
What happens to revenue from speeding and parking tickets?



WHAT SHOULD YOU BE DOING TO PREPARE FOR THIS FUTURE?

RACE TO EMBRACE

- Four major Federal pilot programs underway:
 - Ann Arbor Connected Vehicle Test Environment (AACVTE)
 - Tampa (THEA) Pilot
 - Wyoming/ICF Pilot
 - New York City Pilot
- State/locally led initiatives in Michigan, Virginia, Arizona, Minnesota, Florida, California, New York, Utah and many others.


WHY START EARLY?

- → Further economic competitiveness
- Identify pathways to early user benefits
- Gain deployment experience before mandate

MDOT LOOKING TO MOBILE FOR NEAR-TERM BENEFITS

PREPARE YOUR DIGITAL INFRASTRUCTURE

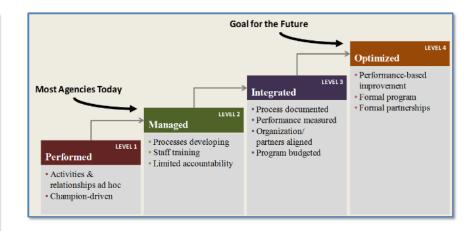
- Assess whether your systems today are scalable/compatible with a connected vehicle environment
 - Data management
 - Communications network capacity
 - Data sharing agreements
 - IT/network security

KEY INFRASTRUCTURE SYSTEM ELEMENTS

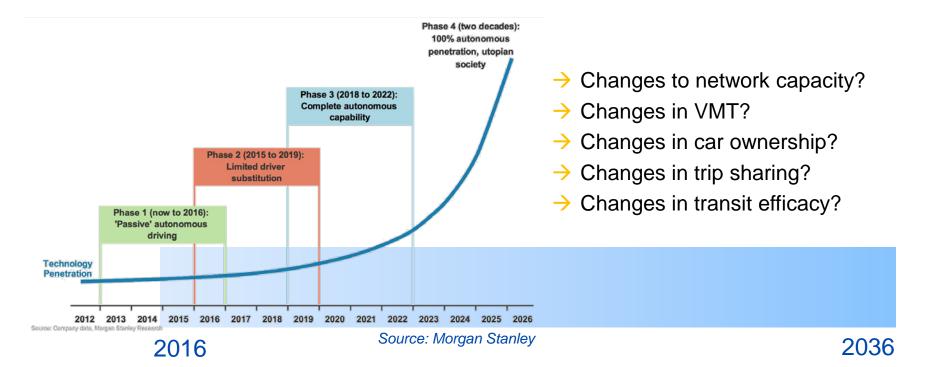
5.9 GHz DSRC Roadside Units

Signal Controller/ Cabinet Upgrades

Backhaul Communications and Data Management


Infrastructure-Based Messaging

YOU DO NOT HAVE TO PILOT TO PREPARE


- → Follow industry activity/research
- → Anticipate greater communications needs and plan it into projects where sensible
- → Conduct readiness self-assessment using a Capability Maturity Model

Capability Level Self Evaluation Structure						
DIMENSIONS	LEVEL 1 PERFORMED	LEVEL 2 MANAGED	LEVEL 3 INTEGRATED	LEVEL 4 OPTIMIZING		
Business Processes		x				
Systems & Technology			X			
Performance Measurement	x	le	west vel is straint			
Culture			x			
Organization/ staffing		x				
Collaboration			x			

CONSIDER C/AV IMPACT ON LONG-RANGE PLANNING

WHERE ARE THE ANSWERS?

OR

Scenario Planning

- → Roadway capacity
- → Travel behavior
- → Vehicle occupancy
- → Timeframe of introduction
- → Rate of fleet penetration

I-94 CORRIDOR STUDY – TWIN CITIES

- MnDOT is asking "how will changes with C/AV impact our long-term plans for the corridor?"
- Scenario planning and modeling framework under development

This era will represent the biggest change in transportation since the advent of the automobile itself.

Embrace

Plan

Prepare

Scott Shogan

shogan@pbworld.com 313.963.2808

