2015 T.H.E. Conference

Short Span Bridge Design Alternatives

By: Jack Elston, P.E., Steve Megginson, P.E., S.E.

- Introduction
- Bridge Planning Alternatives
- Design Comparisons
- Summary

Pragmatic Comparison of Rural Bridges 40 – 120 ft

- Precast Prestressed Concrete Deck Beams
- Cast-in-Place Concrete Slabs
- Concrete Slab on Steel Beams
- Concrete Slab on Precast Prestressed Girders
- Culverts / 3 Sided Structures <40 ft

Precast Prestressed Concrete Deck Beams

- Span Lengths: 40 ft to 100 ft
- Predominant on County & Township Inventories
- Quick Fabrication and Erection
- Salt and heavy loads deteriorate shear keys
- Concrete and HMA & A-3 overlays improve ride quality

Bridge Planning Alternatives

Cast-in-Place Concrete Slabs

- Max Span length ~ 45 ft
- Requires Piers in channel
- Thin superstructure depth
- Long life span / Low maintenance
- High labor costs Regional

2015 T.H.E.

5

Concrete Slab on Steel Beams

- Single Span Lengths: 60 ft to 120 ft
- Weathering Steel / Integral Abutments
- Long Life Span and Low Maintenance
- Suitable for Rehabilitation/ Deck Replacement

Structural Steel Prices have remained competitive

Concrete Slab on Precast Prestressed Concrete Beams (PPCI)

- Single Span Lengths: 60 ft to 135 ft
- Long Life and Low Maintenance
- Less Competitive Than Steel: Span to Beam Depth Ratio

New PPC-IL Shapes planned for release

Box Culverts

- Single and Double Boxes are most cost effective
- Long Life and Low Maintenance
- Labor Intensive Construction
- Intrusive Instream Work
 - & Permitting / Debris

3 Sided Structures

- Provide quick construction and natural bottom
- Applications can be limited by foundation material
- Evaluate Scour Potential

Design Comparisons

Span Length Life Expectancy

Construction Costs

Instream Work

Maintenance Needs

Determine Design Span Length

- Site Layout Channel Width
- Highwater & Hydraulic Capacity
- Superstructure Construction Depth
- Set Approach Roadway Grade

Optimize Constructability

- Reduce Instream Work
- Allow Equipment Access to Superstructure
- Ensure Material Delivery & Logistics

- Reduce
 Closure Time
- Allow Future Rehabilitation
- Salt Usage?

Average Bridge Cost Comparisons

- CIP Concrete Slabs 3 span 154 \$/sf
 PPC Deck Beams 3 span 165 \$/sf
 PPC Deck Beams Single span 149 \$/sf
- Steel Beams Single span

2014 Lettings

Case Study: Long Span Structure options Vermilion County, Township Bridge, 120 ft length

- 1) Three Span PPC Deck Beam
- 2) Single Span PPC Deck Beam
- 3) Single Span Steel Beam

\$642,000 \$580,000 \$653,000

Steel Beams provided longer expected life span

Low Maintenance, Clear of Debris

Case Study: Multiple Span Structure options Fayette/ Shelby County, C.H. 14 Bridge, 225 ft Length

- 1) Three Span PPC Deck Beam
- 2) Three Span Steel Superstructure

Limited Detour Options for Traffic PPC Beams allow quicker construction \$1,263,000 \$1,306,000

Case Study: Medium Length Structure options McLean County, C.H. 36, 84 ft length

1) Three Span CIP Concrete Slab

- \$774,000 \$800,000
- 2) Single Plate Steel Superstructure

Piers Eliminated in Channel Adequate Freeboard for Deeper Steel beams

Case Study: Short Span Structure options Ford/ Iroquois County, Township Bridge, 68 ft length

1) Three Span PPC Deck Beam

2) Three Span CIP Concrete Slab

\$193,000 \$232,000

Concrete Slab provides longer structure life

In Conclusion:

• *Initial Cost* and *Life Expectancy* most often affect structure choice.

 Communication and Planning of design factors are critical to find the best solutions.

2015 T.H.E. Conference

Questions?

By: Jack Elston, P.E., Steve Megginson, P.E., S.E.

