

That's No Ordinary Bridge

Ben Zeman, P.E. Lance Peterman, P.E.,S.E. Caahlen McAtee, P.E.

F

Presentation Outline

- Project Overview
- Design
 - Behavior of Skewed Structures
 - Framing Plan
 - 3D Finite Element Analysis
 - $_{\circ}$ Detailing and Fit
 - $_{\circ}$ Pier Design
 - Bearing Design
- Construction
- Summary

Presentation Outline

- Project Overview
- Design
 - Behavior of Skewed Structures
 - Framing Plan
 - 3D Finite Element Analysis
 - Steel Details and Fit Condition
 - Pier Design
 - Bearing Design
- Construction
- Summary

JANE ADDAMS MEMORIAL TOLLWAY REBUILDING AND WIDENING PROJECT Construction Schedule

90

Updated: 02/26/15

Project Overview – Higgins Road

- Hoffman Estates, IL
- 30 miles NW of Chicago
- Twin two-lane bridges span over I-90
- Currently 26,000 vehicles per day increasing to 43,000 in 2040

Project Overview

Project Overview

- High voltage power lines
- Large diameter water main
- Large diameter gas mains
- Oil pipeline
- Historic farm properties
- Forest preserve

Project Overview

- Two spans at 280 feet = 560 feet
- Long enough to cross
 - $_{\circ}$ a 6-lane road
 - $_{\circ}$ a 4-lane road
 - AND a 20-lane freeway...
 - $_{\circ}$ With room to spare

Presentation Outline

- Project Overview
- Design
 - Behavior of Skewed Structures
 - Framing Plan
 - 3D Finite Element Analysis
 - Steel Details and Fit Condition
 - Pier Design
 - Bearing Design
- Construction
- Summary

Design

Design

- Stub abutments behind 600 ft long soldier pile walls
- Modular swivel type expansion joints at each abutment
- Multi-column pier supported on 4 rows of battered piles

Behavior of Skewed Structures

- Girder differential vertical deflection causes lateral deflections and twist
- Shifting of load between girders creates torsion and changes the vertical and horizontal reactions
- Cross-frames attempt to equalize adjacent girder deflections

Framing Plan

- Integrated system behavior is recognized with framing plan arrangement
- Continuous versus staggered diaphragms
 - ∘ Manage Uplift
 - Flange Lateral Bending

Framing Plan

- Selectively remove cross-frames near the pier
 Nuisance stiffness, reduce transverse load paths
- Use full-depth diaphragms at interior pier location
 Attract load at two distinct locations
- Use staggered cross-frame pattern at skewed ends
 Eliminate the transverse load paths

Framing Plan

Opposite direction of rotation between span 1 and 2

3D Finite Element Analysis

- Properly model girder torsional stiffness and warping stiffness
- Can account for load shifting between girders
- Explicitly model all cross-frame members and full-depth diaphragms
- 2D grid analysis inaccurate results:
 o Cross-frame forces
 - Bearing Reactions
 - Girder displacements

Steel Details

- Full-depth end diaphragm (length ~ 23.5 ft)
 o Too long for a K-type cross-frame
- Auxiliary stiffeners (back-up stiffeners)

End Diaphragm

- Full-depth diaphragm connected to bent stiffener plate
- Bolted jacking stiffener installed after end diaphragm due to conflict

Full-Depth Diaphragm at Pier

 Detail to avoid interference with fixed bearing at skewed pier

Fit Condition

- Severe skew leads to:
 - Out-of-plumb webs after dead load is applied
 - Excessive bearing rotation
 - Try to control this rotation via detailing
- AASHTO Article 6.7.2
 - Fit condition to be specified in the plans
- 3 choices:
 - $_{\circ}$ No load fit (NLF)
 - Steel dead load fit (SDLF)
 - $_{\rm o}$ Total dead load fit (TDLF)

Cross-frames connect to girder locations that have different dead load deflections (differential).

For SDLF and TDLF the cross-frames are forced into place and the girders are twisted out of plumb during the erection.

Figure courtesy of Ronnie Medlock (High Steel).

Detailing and Fit

- For SDLF and TDLF the crossframes are forced into place and the girders are twisted out of plumb during the erection
- Steel Dead Load Fit (SDLF) chosen
 Disc bearing can accommodate
 - rotations
 - Concrete dead load
 - Live load
 - Erection simpler and faster than TDLF
 - Due to larger girder size
 - Limited construction windows

Pier Design: Effect of Skew

Opposite direction of rotation between span 1 and 2

Pier Design

- Severe skew and fixed bearing condition led to high lateral forces in opposite directions
- Segmented pier:
 - Better accommodate internal thermal force demands
 - Reduce torsion in pier cap
- Circular columns directly under girders to effectively carry vertical reaction
- Intermediate circular columns to effectively resist fixed horizontal bearing reactions

Pier Cap Design

- End Result:
 - Horizontal bearing reactions approximately equal to vertical reactions
- High torsional demand
 No. 10 bars all around
- Special design considerations at fixed bearing locations

Concrete Anchorage Design

- Specialized approach with seismiclike detailing
 - Supplemental horizontal and vertical stirrups
 - Welded hoop bars
 - Embedded anchor bolts
 - $_{\circ}$ Bar terminators
- Use of parametric tools
 - Clash detection
 - Verify sequence

Bearing Design

- High Load Multi-Rotational Bearings
- Disc bearings were specified (rotation at abutments > 0.05 radians)

Anchor bolts threaded through embedded plate -

Presentation Outline

- Project Overview
- Design
 - Behavior of Skewed Structures
 - Framing Plan
 - 3D Finite Element Analysis
 - Steel Details and Fit Condition
 - Bearing Design
 - Pier Design
- Construction
- Summary

Shop Fit-Up

Pier

Welded hoop bars to confine core for anchorage

Pier Cap Detailing

Bar Terminator

Anchorage

Deck Placement

Placement of concrete along skew to load girders equally

Deck Placement

Bridge Paver rails extended to approach

Swivel Type Modular Expansion Joint

- Multi-directional movement capability
- Detail girders and end diaphragms to accommodate joint
- Special closure pour at joints
 - To minimize movement due to dead load effects (racking)
 - To reduce shrinkage effects

Sometimes it's the little things...

Presentation Outline

- Project Overview
- Design
 - Behavior of Skewed Structures
 - Framing Plan
 - 3D Finite Element Analysis
 - Steel Details and Fit Condition
 - Bearing Design
 - Pier Design
- Construction
- Summary

Summary

- Consider 3D FE analysis for severely skewed supports
- Recognize alternative load paths at severely skewed supports
- Be cognizant of high lateral forces at fixed bearings of a skewed support
- Specify fit condition for the girders and cross-frames
- Consider shop assembly to verify fit-up
- Place deck concrete along skew

Be aware of the effects of severe skew on staff!

Acknowledgments

- Client: Illinois Tollway
- Owner: IDOT
- General Contractor: Dunnet Bay Construction
- Steel Fabricator: Industrial Steel Construction
- Steel Erector: Danny's Construction
- Resident Engineer: HR Green
- Erection Engineer: Benesch

QUESTIONS.....

FS

