TRANSPORTATION HIGHWAY ENGINEERING CONFERENCE – 2017

URBAN LIDS

FINAL DESIGN EXPERIENCES AND HIGHLIGHTS FROM THE SR520 EASTSIDE HOV AND TRANSIT PROJECT, KING COUNTY, WASHINGTON

SR520 CORRIDOR BACKGROUND

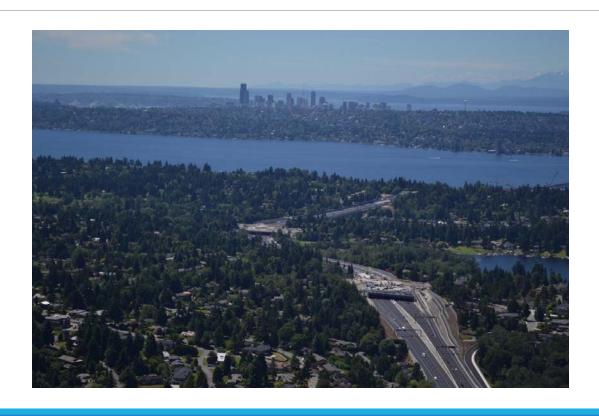
- SR520 BRIDGE REPLACEMENT AND HOV PROGRAM FROM I-405 TO I-5
 - SR520 Eastside Transit and HOV
 - SR520 Floating Bridge and Landings
 - SR520 Westside
 - \$4.56B TOTAL PROGRAM/\$2.4B SPENT TO DATE

EASTSIDE PROJECT BACKGROUND

- SR520 EASTSIDE TRANSIT AND HOV PROJECT TIMELINE
 - 2008 EA Issued
 - 2010 Environmental Process Complete
 - · 2010 Design-Build Procurement and Award
 - 2011 Design and Construction Begins
 - 2014 Major Improvements Complete
 - 2015 All Construction Complete
 - 2016 Project Close Out Activities

EASTSIDE PROJECT BACKGROUND

- SR520 EASTSIDE TRANSIT AND HOV PROJECT DELIVERY METHOD & COSTS
 - Design-Build Procurement 2 Step Process, Best Value Selection
 - Project Costs:
 - \$306M Winning Bid by Eastside Corridor Constructors with Lochner as Prime D-B Design Consultant
 - Final Cost of Construction with Additions \$364M +/-
 - \$422M Engineers Estimate
 - Co-Location of Constructor, Owner and Designer Staff in Project Office

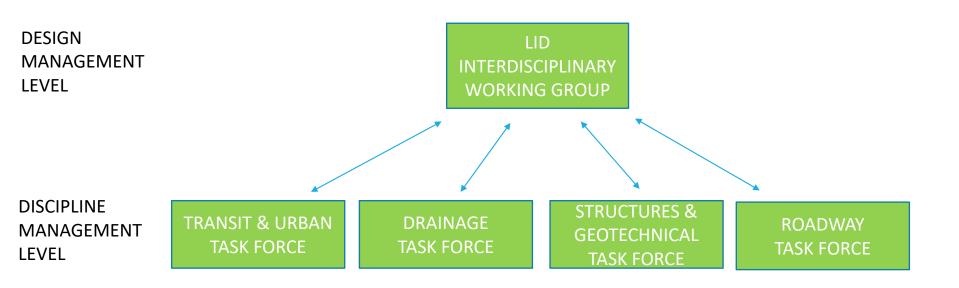


SR520 EASTSIDE BACKGROUND

- SR520 EASTSIDE TRANSIT AND HOV PROJECT PARTICULARS
 - Corridor Originally constructed in the 1960's
 - Evergreen Point Floating Bridge open in 1963
 - 2 General Purpose Lanes in Each Direction
 - Narrow Shoulders
 - Complete Reconstruction under Staged Traffic Required
 - Basic Configuration and Requirements Defined in WSDOT D-B Procurement Documents
 - Elements of the D-B Basic Configuration & Required Design Elements:
 - 2 General Purpose Lanes Lanes
 - 1 HOV and Transit Lane in Each Direction to Facilitate Movement of Traffic and Center BRT Function
 - Various Safety Improvements to the Corridor
 - 3 Urban Lids
 - 2 Major Bridges, 3 Pedestrian Tunnels
 - · Noise Walls, Trails and Corridor Aesthetics
 - 4 Bus Rapid Transit Stations
 - 150 +/- Retaining Walls
 - ITS Components and Structures

SR520 EASTSIDE BACKGROUND PROJECT LOCATION

SR520 EASTSIDE BACKGROUND


ORGANIZATION OF LID DESIGN TEAM

-HIGH LEVELS OF INTERDISCIPLINARY COLLABORATION-

- Constructors
- Urban Architecture & Lighting
- Landscape Architecture
- Transit Architecture
- Structures / Bridge Engineering
- Roadway Geometrics Design & Engineering
- Drainage Engineering & Design
- Geotechnical Engineering

LID DESIGN TEAM ORGANIZATION

URBAN FINAL DESIGN DEVELOPMENT PROCESS

URBAN DEVELOPMENT PROCESS PLAN (UDPP)

PURPOSE

ENGAGE THE STAKEHOLDER COMMUNITIES IN THE FINAL DESIGN PROCESS FOR THE URBAN LIDS.

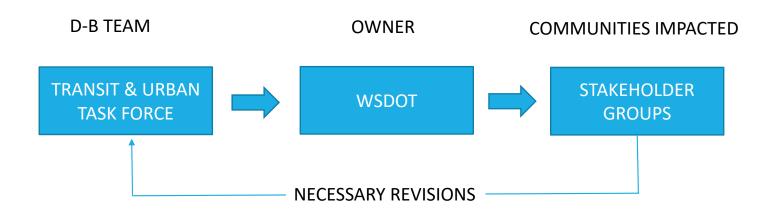
•GOALS

- PROVIDE MEANINGFUL OPPORTUNITY FOR DESIGN INPUT BY STAKEHOLDERS
- ENSURE NO SURPRISES IN RELEASED FOR CONSTRUCTION DESIGN.
- FOCUS ON INDIVIDUAL COMMUNITY NEEDS WHILE MAINTAINING A CONSISTENT CORRIDOR
- IDENTIFY CHANGES NEEDED

ORGANIZATION OF STAKEHOLDER WORKING GROUPS

- TWO MAIN GROUPS
 - POINTS COMMUNITIES: MEDINA, HUNTS POINT, YARROW POINT AND CLYDE HILL
 - CITY OF BELLEVUE AND CITY OF KIRKLAND

URBAN FINAL DESIGN DEVELOPMENT PROCESS


URBAN DEVELOPMENT PROCESS PLAN (UDPP)

FOCUS ON ELEMENTS OF URBAN DESIGN AND LANDSCAPE

- HARDSCAPE FEATURES
- PLANTINGS AND PLANT PALLET
- TREE SPECIES AND LOCATIONS
- TRAIL AND PATH CONNECTIONS
- CIRCULATION PATTERNS
- LAYOUT OF URBAN SPACES
- MAINTENANCE REQUIREMENTS
- RECOMMENDATIONS FOR CHANGES

UDPP PROCESS FLOW

92ND AVENUE NE. LID DESIGN

- 90,000 SF +/- (445'x202')
- Bus Rapid Transit (BRT) Stations
- BRT Drop Off Area
- Great Lawn
- Urban Features and Trail Connections

92ND AVENUE NE. LID DESIGN

84TH AVENUE NE. LID DESIGN

- 74,000 SF +/- (476'x156')
- Round About
- Urban Features
- Regional and Local Trail Connections

84TH AVENUE NE. LID DESIGN

EVERGREEN POINT LID DESIGN

- 100,000 SF +/- (485'x210')
- Bus Rapid Transit Stations
- Parking for BRT
- Great Lawn
- Olympic Mountain Range Overlook
- Urban Features and Trail Connections

EVERGREEN POINT LID DESIGN

LID FEATURES – TRANSIT ACCESS

LID FEATURES — TRANSIT ACCESS

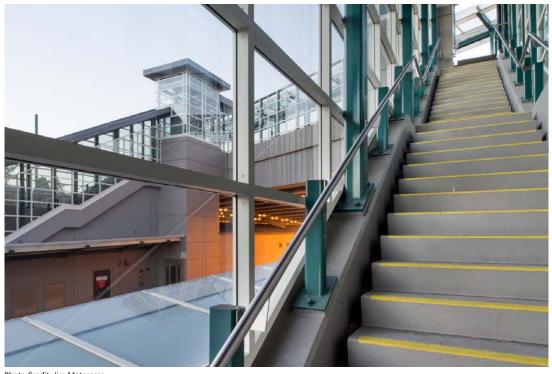
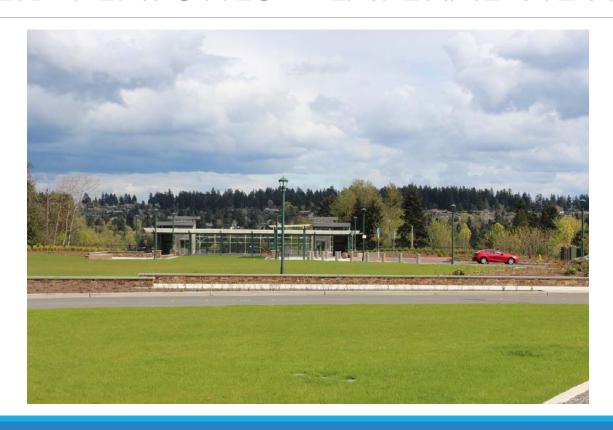


Photo Credit: Jim Mataresse

LID FEATURES – TRANSIT ACCESS

LID FEATURES – TRANSIT ACCESS

LID FEATURES — URBAN SPACES


Photo Credit : Jim Matarrese

LID FEATURES — CONNECTIONS

LID FEATURES – LATERAL VIEWS

DESIGN HIGHLIGHTS - STRUCTURES

ATYPICAL CONDITIONS:

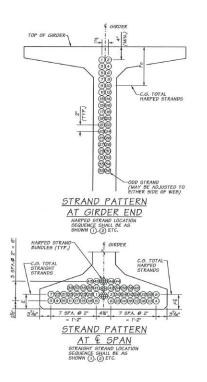
- SCALE AND SIZE OF BRIDGES
- LOADINGS DEAD AND LIVE
- TOP OF DECK GRADING DRIVEN BY DRAINAGE
- MULTIPLE DISCIPLINES INVOLVED

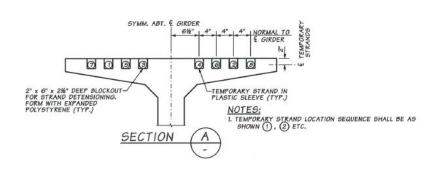
DESIGN HIGHLIGHTS - STRUCTURES

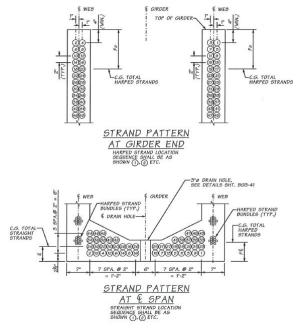
- SOIL FILLS ON LID UP TO 4 FEET IN DEPTH
 - FULL SATURATION OF SOIL PRESUMED POSSIBLE
 - PLANTINGS INCLUDING TREES CAPABLE OF REACHING 30-40 FEET IN MATURE HEIGHT
- LIVE LOAD FOR ASSEMBLY TYPE LOADS AT 100 PSF, WITHOUT AREA REDUCTION
- HIGH SEISMICITY CORRIDOR
 - SDC D
 - PGA OF UP TO 61% OF GRAVITY
 - PEAK SPECTRAL ACCELERATION OF 120% OF GRAVITY
 - PUSH-OVER REQUIREMENTS & MINIMUM LATERAL STRENGTH CONTROLLED DESIGN TO LARGE EXTENT
- NFPA 502 AND PROJECT REQUIREMENTS (>300' ROADWAY TUNNEL)
 - ENTRY CONTROL
 - FIRE PROTECTION REQUIRED FOR GIRDERS
 - NON-COMBUSTIBLE MATERAILS PROHIBITED UNDER LID

DESIGN HIGHLIGHTS - CONSTRUCTABILITY

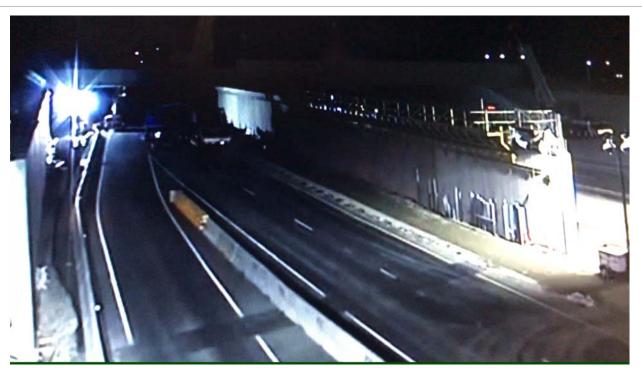
- LIDS CONSTRUCTION OCCURRED IN TWO MAIN PHASES
- •GIRDER ERECTION OCCURRED DURING SR520 WEEKEND SHUTDOWNS
- DETAILS REQUIRED TO MAXIMIZE ECONOMY
 - ACCELERATED BRIDGE CONSTRUCTION (ABC) ELEMENTS
 - PPC DECK PANELS
 - WSDOT WF PPC SUPER GIRDERS (24,000 +/- LF)
 - TUB FASCIA GIRDERS
 - MAXIMIZE DECK SPAN BY OPTIMIZING GIRDER DEPTH = EFFICIENT DECK & LESS OVERALL ELEMENTS
 - CIPC ABUTMENT AND PIER DETIALS SIMILAR ACROSS ALL THREE LIDS, BASED ON MODULE
 - SIMPLE REPEATABLE DETAILS = LEARNING CURVE LIMITED & HIGH PRODUCTION RATE


DESIGN HIGHLIGHTS —CONSTRUCTABILITY USE OF WSDOT SUPERGIRDERS




DESIGN HIGHLIGHTS – CONSTRUCTABILITY A VIEW FROM BELOW 84TH AVE NE LID

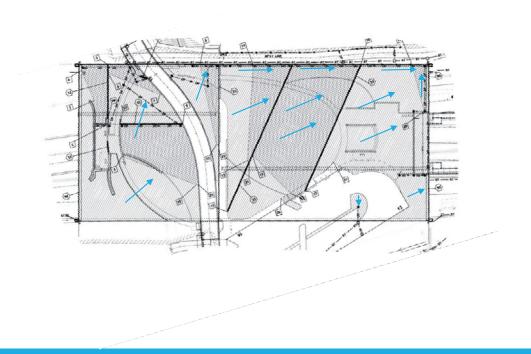
DESIGN HIGHLIGHTS —CONSTRUCTABILITY USE OF WSDOT SUPERGIRDERS

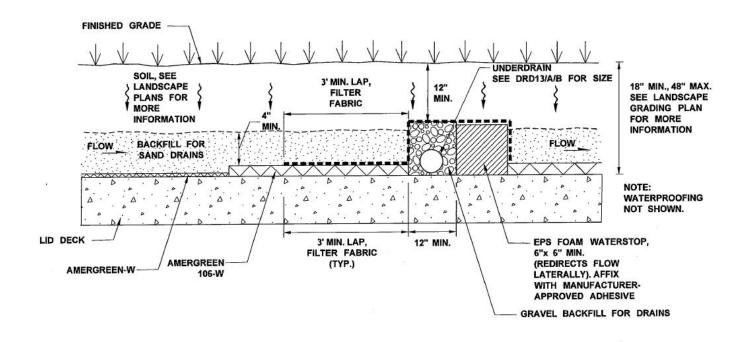

DESIGN HIGHLIGHTS – CONSTRUCTABILITY DIAPHRAGM CONSTRUCTION/STAGING

DESIGN HIGHLIGHTS –CONSTRUCTABILITY PPC DECK PANELS/STAGING

DESIGN HIGHLIGHTS - CONSTRUCTABILITY

DESIGN HIGHLIGHTS – LID DRAINAGE


- DECK GRADING FOR DRAINAGE
 - MORE SIMILAR TO EARTHWORK THAN TYPICAL BRIDGE DECK
 - USE OF 0.3% MIN. AND >=0.5% DESIRABLE SLOPES
 - USE OF PREFABRICATED DRAINAGE MAT VARYING THICKNESS AND SAND FILL DRAINAGE LAYER
 - USE BELOW GRADE CHECK DAMS AND CRIKETS TO CONTROL AND DIRECT SUBSURFACE WATER FLOW
 - CONTROL PERMEABILITY OF ORGANIC PLANTING SOILS


DESIGN HIGHLIGHTS - DRAINAGE

DESIGN HIGHLIGHTS - DRAINAGE

DESIGN HIGHLIGHTS - DRAINAGE

OPPORTUNITIES FOR FURTHER INNOVATION

- ABC SUBSTRUCTURE ELEMENTS
- PRECAST DECK ELEMENTS AND CLOSURE POURS.
- DIAPHRAGM MIMIZATION OR ELIMINATION
- USE OF TURF SUBSTITUTES

THANKS TO ALL FOR ATTENDING QUESTIONS?