HSM PREDICTIVE METHODS IN PRELIMINARY ENGINEERING

2017 ILLINOIS THE CONFERENCE

Filiberto Sotelo & Steven Schilke, P.E.

OUTLINE

- Safety & Transportation Management Process
- What is HSM?
- Illinois HSM Predictive Tool
- Phase 1 Examples
 - US 20 at Marengo Beck Road
 - IL Route 47 in Woodstock

SAFETY & TRANSPORTATION MANAGEMENT PROCESS

THE HSM IS A TOOL TO CHANGE HOW WE CONSIDER SAFETY

Substantive

Nominal Safety

Front of

Geometric Design of Highways and Streets 2004

American Association of Fister Rightway and Transportation Official

Examined in reference to <u>compliance with</u> <u>standards, warrants,</u> <u>guidelines</u> and sanctioned design procedures

The <u>expected or</u> <u>actual crash</u> <u>frequency and</u> <u>severity</u> for a highway or roadway HIGHWAY SAFETY MANUAL Ist Edition Volume 1 • 2010

AASHO

5

Safety

NOMINAL VS. SUBSTANTIVE SAFETY

- Nominal safety is the use and adherence to engineering standards and practices
- Substantive safety is the performance of the street or highway as measured by frequency of traffic crashes and their outcomes (severity).

WHAT ARE BENEFITS OF USING HSM PREDICTIVE METHODS IN PLANNING?

- Improve Safety Outcomes
- Make Better Use of Limited Resources/Maximize Benefit
- Provide Objective Evaluation of Project Alternatives
 - Evaluate Effects of:
 - Minor Design Revisions/Enhancements
 - Potential Design Exceptions or Policy Variances
- Make Better Choices for Our Transportation
 Investments
- Stave Off Public/Political Pressure (When Not a "Good" Choice)

HSM PREDICTIVE METHODS

- Part C Methodology Includes:
 - Safety Performance Functions
 - Crash Modification Factors
 - Calibration Factor
- Applications
- Example Problems
- References

SAFETY PERFORMANCE FUNCTIONS & CALIBRATION

- Calibrated HSM Part C Models with Data from Illinois
 - This project developed the SPF Illinois calibration factors as well as the crash severity and collision type distribution tables specific to:
 - Chicago Metro Area (District 1)
 - Downstate (Districts 2-9)
- HSM Predictive Model User Guide
 - Includes Examples

HSM CRASH PREDICTION TOOL

23

								- 20					
2			Worksheet 1A	General Info	ormation ar	nd Input Data	for Rural T	wo-Lane	Two-Way I	Roadway Seg	ments		
3	General Information												
4	Project Description				Roadway								
5	Analyst				Roadway Section								
6	Agency or Company				lurisdiction								
7	State					Study Period							
8	Date Performed						,						
9	Input Data					Base Co	onditions	Site Conditions					
10	Segment Name						-	Segment 1					
11	Lenath of seam	ent, L (mi)					-	1					
12	AADT (veh/dav))					1						
13	Lane width (ft)						12 12						
14	Shoulder width	(ft)					(6	6				
15	Shoulder type						Pa	ved	Paved				
16	Length of horizontal curve (mi)					()						
17	Radius of curvature (ft)					()						
18	Spiral transition curve (present/not present)					Not P	resent						
19	Superelevation variance (ft/ft)					< 0	.01						
20	Grade (%)					()						
21	Driveway density (driveways/mile)					{	5						
22	Centerline rumble strips (present/not present)					Not P	resent	Not Present					
23	Passing lanes [present (1 lane) /present (2 lane) / not present)]					Not P	resent	Not Present					
24	Two-way left-turn lane (present/not present)					Not P	resent	Not Present					
25	Roadside hazard rating (1-7 scale)						3 3						
26	Segment lighting (present/not present)					Not Present Not Present							
27	Auto speed enforcement (present/not present)					Not Present Not Present							
28	Calibration Factor, Cr				1 1.00								
29	Observed KABC Crashes (crashes/year)												
30	Observed PDO	Crashes (crashes	s/year)										
31	Worksheet 1B Crash Modification Factors for Re						ural Two-l	Lane Two	Way Road	lway Segmen	ts		
32	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
33	CMF for Lane	CMF for	CMF for	CMF for Super-	CMF for	CMF for	CMF for	CMF for	CMF for	CMF for	CMF for	CMF for	Combined
34	Width	Shoulder Width	Horizontal	elevation	Grades	Driveway	Centerline	Passing	Two-Way	Roadside	Lighting	Automated	CMF
35		and Type	Curves			Density	Rumble	Lanes	Left-Turn	Design		Speed	
36							Strips		Lane			Enforcement	
37	CMF 1r	CMF 2r	CMF 3r	CMF 4r	CMR 5r	CMF 6r	CMF 7r	CMF 8r	CMF 9r	CMF 10r	CMF 11r	CMF 12r	CMF com
38	from Equation	from Equation	from Equation	from Equations	from Table	from Equation	from	from	from	from Equation	from Equation	from Section	(1)x(2)x
39	10-11	10-12	10-13	10-14, 10-15,	10-11	10-17	Section	Section	Equation	10-20	10-21	10.7.1	
40				or 10-16			10.7.1	10.7.1	10-18 &				x(11)x(12)
41									10-19				
42	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.000
13													

IDOT HIGHWAY SAFETY MANUAL CRASH PREDICTION TOOL

The tool was developed based on the NCHRP 17-38 excel spreadsheet and incorporates the SPF Illinois calibration factors, crash severity distribution tables and collision type distribution tables into the crash predictive models, including examples.

Illinois data used to develop calibration factors specific to: * Chicago Metro Area (District 1) * Downstate (Districts 2-9)

AASHTO HIGHWAY SAFETY MANUAL ILLINOIS USER GUIDE

AASHTO Highway Safety Manual Illinois User Guide

with Illinois Calibration Factor and Default Values

Prepared for linois Department of Transportation • Bureau of Safety Engineering of Transportation CO 0409-15, 11/14

This guide provides step-by-step procedure for applying the HSM Part C crash predictive models for safety analysis in Illinois.

* Includes Examples

PHASE I PROCESS

ALTERNATIVES ANALYSIS

Roundabouts

- US 20 at Marengo Beck Road
- Raised Curb Median
 - IL Route 47 in Woodstock

EXISTING CONDITIONS

ALTERNATIVES COMPARISON

Total Crash Reduction

A comparison of total crashes between the 2040 No Action Scenario and 2040 Alternative Scenario

Severe Crash Reduction

A comparison of severe crashes between the 2040 No Action Scenario and 2040 Alternative Scenario

	TS 1	TS 6-A	RAB 1	RAB 2	
Construction Cost	1.8M	2.4M	3.4M	3.9M	
Total Crash Reduction	-33%	-37%	-65%	-59%	
Severe Crash Reduction	-44%	-51%	-71%	-67%	
Opening Day Operations					
2040 Traffic Operations					
ROW Impact					
Displacements					
Wetlands					
Access Change					
Driver Familiarity					

ALTERNATIVES COMPARISON

• Driver Familiarity Evaluation of driver comfort with the alternative geometry

	TS 1	TS 6-A	RAB 1	RAB 2
Construction Cost	1.8M	2.4M	3.4M	3.9M
Total Crash Reduction	-33%	-37%	-65%	-59%
Severe Crash Reduction	-44%	-51%	-71%	-67%
Opening Day Operations	3-D/E	3-D/E	3 - B	3 - B
2040 Traffic Operations	2 - F	1 - F	4 - B	1 - F
ROW Impact	0 AC	0.4 AC	2.6 AC	2.7 AC
Displacements	0	0	0	0
Wetlands	0 AC	0 AC	0.2 AC	0.3 AC
Access Change				
Driver Familiarity				

IL 47 IN WOODSTOCK STUDY

PURPOSE AND NEED – ACCESS MANAGEMENT

Existing Conditions:

- Greater than 300 access points
- 50 access points per mile (US 14 to Ware Road)
- Driveways, Crash Potential

ALTERNATIVES EVALUATION

Mainline

• Two lanes in each direction separated by a raised curb median

Typical Section Rendering: Looking North from IL Route 120 Intersection

ALTERNATIVES EVALUATION

Pros:

- 4 fewer relocations & 7 fewer affected parcels
- Less delay
- Does not impact the railroad bridge saving approximately \$30 million
- Reduces construction schedule by 1-2 years

Impact	Roundabout	Signalized
Right of Way (ac.)	2.93	5.13
Affected Parcels	35	42
Commercial Relocations	2	4
Residential Relocations	0	2
Wetland Impacts (ac.)	0.008	0
Delay - Lake (s)	20.7 -C	37.4-D
Delay - McConnell (s)	11.1-B	18.5-B
Cost	\$\$	\$\$\$\$\$

SAFETY ANALYSIS RESULTS RAISED CURB MEDIAN VS. TWO-WAY LEFT TURN LANE (TWLTL)

- National Level
 - Raised Curb Median reduced crash rate by 37% and injury rate by 48%*
- Regional Level (Based on Chicagoland Studies)
 - Raised curb median reduced crash rate by 70%
 - **85%** reduction in pedestrian & bike related crashes
- Project Level (Highway Safety Manual)
 - 8% fewer total crashes anticipated for Raised Curb Median compared to TWLTL
 - 9% fewer fatal and injury crashes anticipated for Raised Curb Median compared to TWLTL

*Source: U.S. Department of Transportation – Federal Highway Administration: Safe Access is Good for Business

WHAT IMPACT WILL THIS HAVE ON MY BUSINESS?

- "Before and After" studies along highways where access has been managed found vast majority of businesses do as well or better after the projects have been completed
- A safer, uncongested roadway will allow customers to get to your business compared with an unsafe, congested roadway which they will avoid

:: Federal Highway Administration, US Department of Transportation

CASE STUDY- GOLDEN COLORADO

Installation of four roundabouts within half-mile long arterial resulted in:

- Slower speeds, but lower travel times and less delay at business access points
- Crash rates dropped by 88% and injury accidents reduced by 93%
- Sales tax revenues increased by 60%

Roundabouts were installed in 1999

NOTE: Crash data was collected 3 years prior to installation and 5 years after

Source: Alex J. Ariniello, LSC Transportation Consultants, Inc. - Are Roundabouts Good For Business?

U-TURNS

How do you make a left hand turn with barrier median?

QUESTIONS?

- Contact Info:
- Filiberto Sotelo
- Email: Filiberto.Sotelo@illinois.gov
- Phone: (217) 557-2563
- Steven Schilke
- Email: <u>Steven.Schilke@illinois.gov</u>
- Phone: (847) 705-4125